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Linking genes to phenotypes has been a major question in evolutionary
biology for the last decades. In the genomic era, few studies attempted to
link olfactory-related genes to different anatomical proxies. However, they
found very inconsistent results. This study is the first to investigate a poten-
tial relation between olfactory turbinals and olfactory receptor (OR) genes.
We demonstrated that despite the use of similar methodology in the acqui-
sition of data, OR genes do not correlate with the relative and the absolute
surface area of olfactory turbinals. These results challenged the interpret-
ations of several studies based on different proxies related to olfaction and
their potential relation to olfactory capabilities.

.

1. Introduction
The sense of olfaction is key to the survival of most mammals [1–3]. However,
there is still a large gap in our understanding of how olfactory performance
relates to its genomic and anatomical bases, andwhether and how olfactory gen-
etics and morphology differentially covary among species that have contrasting
olfactory capabilities. Olfactory turbinals (turbinals covered with olfactory epi-
thelium) are considered the main olfactory bony system. Olfactory sensory
neurons from these areas project posteriorly via olfactory nerves through the cri-
briform plate and join the glomeruli from the main olfactory bulb [1]. It is
assumed that olfactory turbinals are uniformly covered with olfactory receptors
(ORs), therefore the absolute surface area of olfactory turbinals may reflect the
absolute number of ORs [4–8]. Comparative phylogenetic analyses demon-
strated a relation between the relative size of olfactory turbinals and species
ecology such as diet [4,7] or lifestyle [4,8]. At the genomic level, OR genes
encode the most represented chemosensory receptors in mammals, and consti-
tute the largest multigenic superfamily categorized into about 13 gene families
[3,9,10]. Moreover, the number of functional and pseudogenized OR genes and
their composition vary highly along mammalian phylogeny [3,9] and with
species ecology [9–15]. This is for example the case for diet [10,13,15] or ecologi-
cal lifestyle [11,14,16,17]. Therefore, OR genes are expected to covary with
morphological olfactory-related proxies such as olfactory turbinals.

Linking genes to phenotypes has been a major question in evolutionary
biology for the last decades. Few studies focused on olfaction, evaluated the cor-
relation between genetic and morphological proxies and yielded contrasting
results [18–20]. However, to date, none of them investigated the potential relation
between olfactory turbinals and OR genes. The major obstacles to address these
issues have been to access and accurately quantify the internal olfactory organs as
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well as the limited number of high-quality, available mamma-
lian genomes. However, in 2022, more than 500 mammalian
genomes became mineable, and genome quality has
increased exponentially [21]. Similarly, X-ray micro-computed
tomography (micro-CT) has becomemore accessible, resulting
in an unprecedented expansion of three-dimensional data for
internal anatomical structures [22]. This provides ample
opportunities to fill the gap in our understanding of the
basis and evolution of olfaction in mammals.

In the most diversified mammalian order, the rodents
[23], we investigated the potential relation between the two
main proxies for olfaction: (1) OR genes and (2) olfactory
turbinals. For this, we used standardized genomics and mor-
phological data, carefully acquired by similar investigators
and using identical methods.
 Lett.19:20230080
2. Results
No significant correlations were found between (i) the
number of functional OR genes and the relative olfactory
turbinal surface area (figure 2a, s = 0.33, r2 =−0.01, p = 0.35),
(ii) the number of functional OR genes and the absolute olfac-
tory turbinal surface area (figure 2b, s = 0.04, r2 =−0.01, p =
0.39), (iii) the number of functional OR genes and the skull
length (figure 2c, s = 0.05, r2 =−0.04, p = 0.63), (iv) the total
number of OR genes and the skull length (figure 2d,
s = 0.21, r2 =−0.04, p = 0.18), (v) the number of functional
OR genes and the number of olfactory turbinals (figure 2e,
s =−0.03, r2 =−0.05, p = 0.94), (vi) the total number of
OR genes and the number of olfactory turbinals (figure 2f,
s = 0.07, r2 =−0.05, p = 0.90), (vii) the relative olfactory turb-
inal surface area and the number of olfactory turbinals
(figure 2g, s =−0.08, r2 =−0.04, p = 0.72), and (viii) the absol-
ute olfactory turbinal surface area and the number of
olfactory turbinals (figure 2h, s = 3.06, r2 = 0.11, p = 0.07). Con-
versely, there is a significant correlation between: (i) the total
turbinal surface area and the skull length (figure 2i, s = 2.82,
r2 = 0.96, p = 7.01 × 10−16), (ii) the absolute olfactory turbinal
surface area and the skull length (figure 2j, s = 2.41, r2 =
0.94, p = 3.25 × 10−14), and (iii) the absolute olfactory turbinals
surface area and the total turbinal surface area (figure 2k, s =
0.86, r2 = 0.98, p = 2.20 × 10−16). The inclusion or exclusion
of the lamina semicircularis (ls) did not change the results
(electronic supplementary material, tables S1–S15). This
reinforces the relevance of our results given the current
available genomes and scanned specimens.

Species with a similar number of functional OR genes
may have different values of the relative olfactory turbinal
surface area (figure 2a). Conversely, species with comparable
values of the relative olfactory turbinal surface area may have
a different number of functional OR genes (figure 2a).

When the 13 different families of functional OR genes are
independently analysed, none of them significantly correlates
with the relative olfactory turbinal surface area that used total
turbinal surface area for sizing (electronic supplementary
material, tables S1–S15). When skull length is used for
sizing, the relative olfactory turbinal surface area significantly
correlates with the number of functional OR genes of the
following families: 1S55, 2S11, 2S1.3.7 and 2S4 (electronic
supplementary material, figure S1). However, r squared
values are very low (less than 0.29) and these significant cor-
relations are only based on the relative olfactory turbinals
surface area that used skull length for sizing (see electronic
supplementary material, Methods S1.).
3. Discussion
(a) Lack of link between genomic and morphology
Despite their key function in olfaction, functional OR
genes and the relative surface area of olfactory turbinals did
not significantly correlate with each other in Rodentia
(figure 2a). Interestingly, species with a similar number of
functional OR genes may have different values of the relative
(or absolute) olfactory turbinal surface area, and conversely
(figures 1 and 2a,b). The absolute surface area of olfactory
turbinals mostly reflects allometry (figure 2b,h,j, [5–8]). The
smallest taxa (Heterocephalus, Microtus, Mus, Muscardinus)
have the lowest values while the largest species (Castor,
Hydrochoerus, Hystrix, Myocastor) have the highest ones.
Indeed, absolute olfactory turbinal surface area is significa-
tively correlated with skull length (figure 2j, [7,8]).
The number of functional OR genes and the total number
of OR genes are independent of species size since they did
not correlate with skull length (figure 2c,d ). This pattern
may be the result of different selective pressures, such as
drift, phylogenetic inertia as well as environmental con-
straints [3,13,14]. As an example, the amphibious mammals
were largely studied in the light of their olfactory turbinal
reductions [4,8] and their large number of OR pseudogenes
and/or different OR gene compositions [11–13,16,24–27].
When amphibious and terrestrial species are compared,
their patterns differ depending on whether we look at the
functional OR genes or the relative surface area of olfactory
turbinals. For example, the amphibious Castor, Hydrochoerus
and Ondatra have the lowest values for the relative olfactory
turbinal surface area while they have an intermediate
number of functional OR genes (figures 1 and 2a). According
to the ecological lifestyle, when the mean value of the
sampled species is considered, there is a tendency for the
reduction of the number of functional OR genes in amphi-
bious species for ORs class I, ORs class II and all ORs
(electronic supplementary material, figure S3). However,
our dataset lacks closely related terrestrial species to go
further in our interpretation. Indeed, the more phylogeneti-
cally distant the species are, the more likely it is that the
observed differences are due to this distance and not to ecol-
ogy. Such an accurate comparison can be approached with
the amphibious Ondatra and the terrestrial Microtus, both
species from the subfamily of the Arvicolinae. Again, when
amphibious and terrestrial species are compared, their pat-
terns differ depending on whether we look at the genomics
or morphological proxies. The relative surface area of olfac-
tory turbinals is markedly lower in Ondatra than in Microtus
(figures 1 and 2a). This is a complete opposite pattern for
the number of functional OR genes, which are higher in
Ondatra than in Microtus (figures 1 and 2a). Our results con-
trast with the significant correlation between the relative
surface area of the cribriform plate and the number of func-
tional OR genes across Mammalia [19]. This is surprising
knowing that the absolute and the relative surface area of
olfactory turbinals significantly correlated with different
proxies of the cribriform plate of carnivora and some myrme-
cophagous mammals [28,29]. The cribriform plate is often
described as a potential proxy for olfactory function [28]
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Figure 1. Inconsistent pattern between the functional OR genes and the relative olfactory turbinal surface area. Phylogeny of the sampled species with bar plots of
their functional OR genes and relative olfactory turbinal surface area as well as three-dimensional representations of their skull and olfactory turbinals. The relative
olfactory turbinal surface area corresponds to the residuals of the PGLS between the absolute olfactory turbinal surface area and the total turbinal surface area. Black
dots represent the illustrated species. Bar plot colours: beige = terrestrial, blue = amphibious, black = subterranean species.
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because it is a proxy for the cross section of olfactory nerves
that originate from the olfactory turbinals and join the olfac-
tory bulb through this plate. Similarly, olfactory turbinals are
described as a potential proxy for olfactory function [4,8]
because it is assumed that they reflect olfactory epithelium
surface area and therefore ORs.

The absence of significant correlations between the two
main genomics and morphological proxies for olfaction
may be explained by several factors. First, it is possible that
olfactory turbinals are not uniformly covered by ORs [30]
and/or that their degree of receptive range varies [31].
Second, the degree of neural connectivity may also vary
between organs and species [32]. Third, the olfactory epi-
thelium cover may vary between species and mammalian
orders [30,33,34]. Also, some evidence in Carnivora
suggested that some parts of the olfactory turbinals may be
selected for respiration [35]. However, in rodents, such vari-
ation is mostly discussed for the lamina semicircularis (ls)
and we demonstrated that with our current dataset, its
inclusion or exclusion did not change the results (electronic
supplementary material, tables S1–S15, see also electronic
supplementary material, Methods S1.). Finally, it is possible
that OR genes do not represent the different expression
levels leading to different olfactory capabilities [36]. A
recent study in phyllostomid bats demonstrated that there
is no relation between the evolutionary rates of OR genes
extracted from transcriptomes and diet whereas there may
exist a relation between olfactory epithelium and diet [37].
In addition, whereas classes I and II of OR genes have
been postulated to bind mostly water-borne and air-borne
odorant molecules [9,38], the different OR gene families
have mostly been distinguished on the basis of their DNA
sequence alignment and phylogenetic analysis, and await
for more functional characterization.

(b) Estimating and linking olfactory capabilities with
morphology and genomes

Our study demonstrated that at the taxonomic scale of
rodents, the number of olfactory turbinals does not correlate
with potential proxies for olfactory functions such as the
number of functional OR genes, and the relative and the
absolute olfactory turbinal surface area (figure 2e,g,h). This
finding matches with the general hypothesis that the
number of turbinals is mostly related to phylogenetic inertia
while their relative size and complexity is related to species
ecology and olfactory performance [4,6–8,33,34,39,40].

Olfactory capabilities are commonly divided in two
major components: (1) sensitivity, the ability to detect
odours at low concentration and (2) discrimination, the abil-
ity to distinguish between two similar odours [4,41]. Van
Valkenburgh et al. ([4] citing [42,43] hypothesized that the
relative surface area of olfactory turbinals may neither corre-
late with olfactory discrimination nor with sensitivity.
Therefore, they suggested that it may characterize the diver-
sity of odorants that can be perceived. However, Martinez
et al. [7] demonstrated that highly specialized worm-eating
rodents have significantly higher relative surface area and
complexity of olfactory turbinals as compared to their close
omnivorous and carnivorous relatives. This may be also the
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case in Carnivora where large-bodied hypercarnivores such
as wolf (Canis lupus) and wolverine (Gulo gulo) have very
large olfactory turbinals [6]. These results suggest that the
relative size of olfactory turbinals may be linked to olfactory
sensitivity. However, the very small number of studies link-
ing olfactory performance with the relative size of olfactory
organs leaves many open questions [44]. In addition, the
mechanisms of olfaction are still not fully understood [45].
For example, a single odorant molecule can be detected by
a specialized receptor, or by multiple receptors operating
independently or in combination. Conversely, a single olfac-
tory receptor can also bind to several odorant molecules
[10,46–48]. To complicate things further, odorant molecules
with different structures may be perceived as a single
odour and different odorant molecules with a similar struc-
ture may be perceived as the same odour, while odorant
molecules with similar structure may be perceived as differ-
ent odours [10,46–48]. However, as an example, the millions
or even trillions of olfactory stimuli that humans can detect
cannot be explained solely by our approximately 400
functional OR genes, even with combinatorial models
[49,50]. In this context, other theories have re-emerged like
the highly debated vibration theory of olfaction based on
quantum physics [45,51–56]. This implies that olfactory
molecules could be detected thanks to their vibration fre-
quency instead of their shape [57]. In this context, it is
challenging to interpret how the number of OR genes
impact the olfactory capabilities. For this, it will be critical
to map the level of gene expression and their composition
on the olfactory turbinals [15,58].
4. Material and methods
In this study, we used the same methodology of data acquisition
both for morphological data and genomic pipeline to extract
OR genes (see discussion in the electronic supplementary
material, Methods S1). Undamaged specimens of 32 individuals
belonging to 23 species were selected from museums (electronic
supplementary material, table S16) and scanned using high-
resolution X-ray micro-computed tomography. Left respiratory
and olfactory turbinals were segmented following Martinez
et al. [7,8] with AvizoLite 2020.1 (VSG Inc.). Mean values were
used when multiple individuals of a species were sampled. OR
genes were extracted from genomic assemblies in silico, using
the same bioinformatic procedures for each species (electronic
supplementary material, Methods S1). The total number of OR
genes is the sum of functional and pseudogenes OR genes. We
performed linear regression and phylogenetic generalized least
squares (PGLS) between the different variables (figure 2, elec-
tronic supplementary material, figures S1 and S2, electronic
supplementary material, tables S1–S15). This was performed
with the gls function from the package nlme [59]. We plotted
linear regressions (continuous lines) and PGLS lines (dashed
lines) when a significant correlation exists. The relative olfactory
turbinal surface area corresponds to the residuals of the PGLS
between the absolute olfactory turbinal surface area and the
total turbinal surface area. The total turbinal surface area corre-
sponds to the sum of respiratory and olfactory turbinal surface
area. We used the phylogeny from Upham et al. [60] and
pruned to match the species in our dataset.
Data accessibility. All data are available in the main text or the sup-
plementary materials. We provided an online link for the Data S1.

The data are provided in the electronic supplementary material
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