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Abstract

Accurate species identification from mammalian craniodental features is essential but traditionally slow and
requires specialized expertise. We address this by developing HISNET-FF, a deep learning framework featuring
a dual-branch architecture to fuse global features from the cranium and local features from the teeth and auditory
bullae. The network employs a hierarchical pipeline, first classifying to genus and then to species. Tested on a
comprehensive image dataset of the Family Talpidae (18 genera, 51 species), HISNET-FF achieved exceptional
accuracy at both the genus (99.6+0.4%) and species (96.5+£1.3%) levels. This species-levelaccuracy significantly
outperforms single-modality approaches, including both flat (up to 91.2+2.3% accuracy)-andthierarchical (up to
93.9+2.1% accuracy) strategies. To enable a fully automated workflow, we also developed a®Y OEO-based tool
that annotates diagnostic features with high performance, achieving 97.8% recall, 97.9% preg¢ision, and 81.5%
mean average precision (mAP@)][.50:.95]). This automation resulted in & mifior drop=in=final identification
accuracy of 1.9%. HISNET-FF thus provides a robust and highly accurate framework that can accelerate

morphology-based research, with strong potential for broader-application.

Keywords: Craniodental morphology; Deep learning; Feature *fusien; Hierarchical classification; Species

identification

INTRODUCTION

Taxonomy underpins numerous biological disciplines, in¢luding biodiversity, conservation, and genetics.
However, this fundamental field faces significant-challenges in the 21st century (Britz et al., 2020). A decreasing
number of specialized taxonomists (Wégelelet al., 2011), and an ever-growing demand for accurate species
identification have created-a,_pressing need: for innovative approaches to species identification. While DNA
barcoding has revolutionized-speciesidentification and classification (Moritz & Cicero, 2004), there remains a
pressing requirement for efficient technologies to enhance the speed and accuracy of morphology-based species
identification (Ors.et al4,2021).

The classification as well as identification of mammals, particularly among speciose small mammal groups
such as rodents,bats, afid eulipotyphlans, have predominantly relied upon cranial and dental characteristics. This
approach has histofical roots dating back to pioneers such as Thomas Oldfield (Hinton, 1929), who recognized
their diagnostic potential. Unlike external morphological traits, which can be highly variable within a taxon or
exhibit similarities across distinct taxa, the detailed and subtle features on skull and teeth offer more consistent
and reliable markers for species identification (Dayan et al., 2002).

Traditional approaches of species identification/delimitation rely on either discrete diagnostic characters or
quantitative analyses, the latter include both traditional morphometrics, which is based on linear measurements,
and geometric morphometrics, which captures complex variations in overall shape (Mutanen & Pretorius, 2007).
These methodologies are invaluable for identifying extant species and are especially critical for fossil taxa, where

teeth and skulls are often the only available materials. Despite their efficacy, morphology-based identification
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requires a high level of specialized expertise and is time-consuming, limiting the pace and scale of modern
taxonomic research (Zamani et al., 2022).

In recent years, deep learning (DL) has emerged as a powerful tool for classification tasks across scientific
disciplines (Lecun et al., 2015), including biological taxonomy (Badirli et al., 2023; Valan et al., 2019). The
foundation for this revolution, particularly for image-based analysis, was laid by Convolutional Neural Networks
(CNNs). This potential was realized in 2012 when AlexNet dramatically outperformed traditional methods such
as support vector machines (SVMs) and random forests (RFs) in the ImageNet LargesScale Visual Recognition
Challenge (ILSVRC) (Krizhevsky et al., 2012). This demonstrated the profound ability "of CNNs to learn
diagnostic patterns directly from raw pixels, making them a natural fit for motphology=based species
identification. This suggests they have broad potential for application not only in taxonomic/research but also
benefit research of ecology and evolution that relying on morphology-based speeieslidéntification (Fortelius et
al., 2002; Lyons et al., 2016). Success has been achieved in identifying plantsiand.ihvertebrates, based on external
morphology (Lee et al., 2015; Zhao et al., 2023). Surprisingly,, its/applicatien to vertebrates (Gill et al., 2024),
especially mammals, remains scarce in the literature. The few existing studigs are often limited in scope, typically
focusing only on discriminating between a small number of-elosely*telated genera or species (Miele et al., 2020;
Pinho et al., 2022).

Our recent work introduced HIS-NET, a CNN-based method for species identification that achieved high
accuracy rates of 95% (genus) and 90% (species) withinsthéiFamily Talpidae (He et al., 2025). Analysis using
Gradient-weighted Class Activation Mapping’ (Grad-CAM) confirmed that HIS-NET correctly focused on
taxonomically informative regions of thesskulls However, the Grad-CAM heatmaps also revealed that HIS-NET
utilized only a limited portion of the skully and did not fully leverage the fine-grained diagnostic information
present on the teeth. This observation suggested an opportunity for further enhancement.

Feature fusion isfa teChnique that combines data from multiple sources or characteristic of different
perspective to exploit itheir complementary information (Caci et al., 2013; Dai et al., 2021). In image
classification, this, often,involves fusing "global" features that capture the overall context of an image, with
"local" features that-capture fine-grained details, thereby enhancing model accuracy (Peng et al., 2021). This
dual-scale approach has delivered notable gains, such as improving tree species recognition by up to percentage
10 points through.bark-and-leaf feature fusion (Bertrand et al., 2018).

In this study, we developed a new hierarchical species identification network using feature fusion (HISNET-
FF). This network uses a dual-stream architecture to separately process and then combine embeddings from both
the cranium, teeth and auditory bullae. Given the well-established principle that dental and auditory bullae
morphology encodes subtle, species-specific traits, we hypothesized that our new dual-stream model would yield
enhanced accuracy in species identification compared with a stand-alone model. We applied this network to the
Family Talpidae, aiming to demonstrate its effectiveness in improving species recognition accuracy.
Furthermore, we also developed and tested a method using a YOLO-based object detection model to streamline

the time-consuming process of annotating key diagnostic features including teeth and auditory bullae.
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MATERIALS AND METHODS

Specimen accession and photography

We focused our study on the mammal Family Talpidae, that includes 19 genera and 68 recognized species
worldwide (Burgin et al., 2025). The photography collection utilized was consistent with He et al. (2025). We
photographed specimens housed in natural history museums in China, Japan, Germany, Vietnam, and the USA.
We followed a consistent protocol for our equipment and setup. All photographs were, taken using a DSLR
camera on a camera stand. Specimens were positioned on a level platform 10-30 cm below-the lens, and we used
a bubble level on both the camera and platform to ensure a consistent, perpendicular perspectivesTjo minimize
shadows on diagnostic features, particularly the teeth, two lights were positioned on.both sides of the cranium,
angled downwards at approximately 60 degrees. To further compensate for the variations=int light sources, we
manually adjusted the camera's F-stop (f/13—/23) and ISO (200-1250) settingssbasedjon our experience, with
the goal of achieving images that were as uniform as possible.in,quality and exposuresAfter removing specimens
that we could not identify confidently, we collected 747 photographs of the ventral view of the cranium, of which
674 were intact and 73 were partially damaged. The data-encompassed 18 genera and 51 species (including
putative species; Supplementary Appendix I). The fumber ‘of photos per species ranged from 3 to 48
(Supplementary Table S1).

Data labeling and manipulation and augmentation

Each image was annotated with the"genus sspeeies, and museum voucher information. For compatibility with
the deep learning models, each/cranial image was cropped and subsequently padded with black pixels on its
shorter sides to create a square input (Figare S1). The full dataset was then split into training (594 images) and
testing (153 images) s¢ts with-an 8:2°fatio (dataset CAO).

The shapes of teeth and the auditory bullae (AB) are crucial for talpid species identification and diagnosis.
Therefore, to 1solate these features, we created a dedicated dental image set (TAQ) using a multi-step process.
First, usingiLabellmg v.1.8.6, we annotated each image by placing a distinct rectangular bounding box around
every individual'toothand auditory bulla. Each tooth was precisely identified and categorized as incisor (11-13),
canine (C1), premolar (P1-P4), or molar (M1-M3) following the dental formulae provided by Wilson &
Mittermeier (2018). Subsequently, we cropped each bounding box and stitched these regions together onto a
new canvas, using their original coordinates to preserve their precise spatial relationships (Supplementary
Figure S1). It should be noted that while the initial bounding boxes for adjacent teeth could have marginal
overlaps, the cropped regions themselves were placed as distinct, non-overlapping images in the final composite.
This final composite image was then padded to a square and added to the TAO dataset, which was subsequently
split into training and testing sets at an 8:2 ratio (Supplementary Table S2).

To reduce overfitting, we employed a series of image augmentation strategies (Maharana et al., 2022).

Initially, we expanded the dataset CAO fivefold by utilizing techniques such as 90-degree rotation, the addition
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of Gaussian noise, random information dropout, and random cropping with coverage of 200 pixels, resulting in
2 970 images (dataset CAS). Subsequently, we further expanded the dataset tenfold by applying five additional
methods, including rotations of 45-degrees, random adjustments to image properties (brightness and hue), and
horizontal translation (right shift by 100 pixels), local patch rotation (4 equal patches), yielding 5 940 images
(dataset CA10). Finally, we introduced ten augmentation techniques: 180-and 270-degree rotation, two instances
of random information dropout, the addition of complex noise (salt-and-pepper and Poisson noise), random
adjustments to image properties (saturation and contrast), vertical translation (downsshift.by 100 pixels), and a
broader range of random cropping and covering (covering 300 pixels). This expanded the‘dataset to 20 times its
original size, resulting in a total of 11 880 images (dataset CA20). The same strategies were also*applied to the
teeth data set to obtain a tenfold augmented data set (dataset TA10) (Supplementary, Table S2)! All specimens
were augmented uniformly.

Natural history collections are inherently imbalanced, a characteristic reflected,in our dataset. Specifically,
the number of photographs per species was highly uneven, rafiging from 3 t6+48, with 15 species represented by
five or fewer specimens. To determine if this imbalance negatively affected the identification of rare species
(e.g., those with <5 specimens), we created a specially.balaneed trainingset, CA-EQ. This set was generated
using a differential augmentation strategy where underrepresented species received higher augmentation rates
(from 6-fold to 50-fold). This process normalized thénumberof training images for each species to a consistent

range of 100 to 250 (Supplementary Table S3):

Feature fusion model architecture design

Cranial photographs capture "global" morphological differences between species, while teeth often contain more
subtle, "local," yet crucial diagnosticsyariations. To effectively integrate these dual-scale morphological features,
we propose a core network employs a dual-branch network architecture. Our implementation of this architecture
consists of three key modules (Figure 1). The process begins with the feature extraction module, which utilizes
two independent*and parallel.bfanches: one branch is dedicated to analyzing all features present in the entire
cranial image, while'the other focuses exclusively on the fine-grained features from the teeth and AB. Following
this independent extraction, the high-level feature outputs from both branches are combined in the feature fusion
module. This module performs intermediate fusion, achieved via a straightforward concatenation process: the
feature map from each branch is first condensed via pooling and flattened into a feature vector, and these two
vectors are then joined end-to-end to create a single, unified feature vector. This unified vector, which represents
the combined information from both cranial and dental sources, is passed to the classification module for

identification.
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Figure 1. The architecture and workflow of the HISNET-FF model. The framework processes a single
ventral cranial image through a multi-stage pipelifiec. A: Data Preprocessing - the original image is processed to
generate two distinct inputs: ong for global cranial features and a composite image for local dental and auditory
bullac (AB) features. B: Corel Network .= two inputs are fed into a dual-branch network where features are
extracted in parallel, [fused, andlthen classified. C: Feature Extraction - each branch uses an EfficientNetB7-
based architeeture to ptoduce.a2560%15x15 feature tensor. D: Feature Fusion - two feature tensors are processed
(pooled, flattenied, activated) and then concatenated into a single 5120-dimensional feature vector. E:
Classification - this 'final vector is fed into a Multi-Layer Perceptron (MLP) classifier to yield the final
identification. F: Hierarchical identification - a core network is first applied to identify genera, and for polytypic

genera, a second specialized network is used to identify species.

Feature extraction module

Our first step was to choose the most effective CNN that could best extract key morphological features from the
images. We conducted an evaluation using the ten-fold augmented cranial (CA10) dataset. We began by
comparing various state-of-the-art networks, including EfficientNetB0 (Tan & Le, 2019), ResNet50 (Targ et al.,
2016), ShuffleNetV2 (Zhang et al., 2018), MobileNetV2 (Howard, 2017), MnasNet (Tan et al., 2019),
GoogleNet (Al-Qizwini et al., 2017), DenseNet121 (landola et al., 2014) as well as a Vision Transformer - Large
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with 32x32 patch size (ViT-L/32) (Zhai et al., 2022). We standardized the image resolution to 224x224 pixels
for both training and testing datasets to enhance computational efficiency. To ensure a fair comparison of their
transfer learning capability, all candidate models were initialized with their standard weights pre-trained on the
ImageNet dataset (Krizhevsky et al., 2012) and fine-tuned all layers on our training data. The performance of
each model was evaluated using the Top-1 accuracy metric (Supplementary Text S1). In this initial test,
EfficientNetBO performed best, achieving an accuracy of 88.9%, surpassing other networks by 1.3% to 10.5%
(Supplementary Table S4; Supplementary Figure S2).

Next, we explored the entire EfficientNet family (from BO to B7). Larger models in this.series have more layers
and can perceive finer details, though they require higher resolution images (Tan & Lejf2019), Aftey evaluating
each model with its recommended image resolution, we found that the most complex, model, EfficientNetB7
(EB7), achieved the highest accuracy (Supplementary S4; Supplementary Eigure S2)*Fherefore, we selected
EB7 as our base feature extractor.

To identify the optimal augmentation level, we evaluated, the' EB7 model's accuracy on datasets with no
(CAO0), 5-fold (CAS), 10-fold (CA10), and 20-fold (CA20) augmentation,/Both the CA10 and CA20 datasets
achieved a peak accuracy of 91.5% (Supplementary Figure.S3), while a specially balanced dataset (CA-EQ)
did not offer an advantage (90.8%). Considering the lack of*improvement beyond 10-fold augmentation, we
selected the more computationally efficient tenfold strategy (CA10) for all subsequent analyses.

The core architecture of EB7 consists of eight stagessincluding an initial convolutional block, known as the
"Stem", followed by seven main stages that are built from tepeating Mobile Inverted Bottleneck Convolution
(MBConv) blocks (Figure 1C). The initialsbloekCaptures basic visual patterns such as edges and textures. As
data flows through the subsequenty more complex blocks, these simple elements are progressively combined to
recognize abstract and taxenomically meaningful structures, such as the specific shape of a tooth. The entire
sequence culminates in a-final Swishactivation function that refines the output from the last MBConv block.
We extract the feature'tensor immediately after this terminal activation. The resulting 2560%15x%15 tensor

represents the most distilled, high-level summary of the visual features the model has learned.

The Module for Feature Fusion

To test our hypothesis that combining cranial and dental information would improve accuracy, we designed a
module to fuse the two tensors generated by the EB7 model (Figure 1D). First, we condense each 2560x15x15
data array down to 2560x1x1 (average pooling). The step is to shrink the data's spatial dimensions while
preserving the most important "global" information. Next, transforms this tensor into a simple, one-dimensional
list, or vector, with a size of 2560%1 (flatten). This is a necessary formatting step to prepare the data for the
subsequent module. Each number in the feature list was passed through an activation function called the Rectified
Linear Unit (ReLU) (Agarap, 2018). The ReLU function is a simple rule: if a feature value is positive, it passes
through unchanged; if it is negative, it is set to zero. This can be summarized using the function f(x) =

max(0, x). This allows the network to learn non-linear relationships inherent in biologic shapes. Afterward, we

? Zoological
‘ Research




applied normalization to each feature list through MinMaxScaler to adjust feature values to the range [0, 1].
Finally, the two normalized lists are concatenated into a vector, with a size of 5120%1, which was then used to

train a new, lightweight classification module.

The Module for classification

To optimize the classification module, we evaluated eight classifiers using the fused 5120%1 vectors from the
CA10 and TA10 datasets: logistic regression, decision tree, random forest, multinpmial_and Gaussian Naive
Bayes classifier, support vector machine (SVM), single-layer perceptron (SLP), and=multi-layer perceptron
(MLP). While SLP, used in EfficientNet, comprises a Dropout layer and a fully conhectedlayer (Tan & Le,
2019), MLP extends this structure with two additional ReLU activations, another Dropout layer, and a second
fully connected layer (Kruse et al., 2022; Fig. 1F). Because this training step”only ,involves the new classifier,
the underlying EB7 feature extractors were frozen, and their weights were net updated; Our results showed that
the MLP achieved the accuracy of 93.5%, higher the gother/classifiers=(ranged from 92.8% to 69.9%;

Supplementary Figure S4) and thus was selected as our classifier:

A hierarchical structure for identification

To account for the taxonomic structure of Talpida®s, inswhich seven of the 18 studied genera are polytypic
(comprising multiple species), we implementedya hierarchical-elassification pipeline. This approach uses a
sequence of distinct, specialized classifiers tosfirst identify the genus and then the species. The process begins
with a primary genus-level classifief, trainedito distinguish among all 18 genera. An input image is first assigned
to its most likely genus. If that genus is monotypic, the identification process is complete. If the image is assigned
to one of the seven polytypie, genera.(e.g., Euroscaptor or Talpa), it is then forwarded to a dedicated species-
level classifier. To this end, we trained seven separate species-level classifiers, one for each polytypic genus.
Each of these classifiers was trained exclusively on the image subset of the species within that specific genus
(Figure1F)yThisssequential design means that a misclassification at the genus level will prevent a correct final
identification.'However, as our genus classifier achieved 99.6% accuracy (up to one is mis-identified, see Result),

this risk of erroriprepagation is minimal.

Model Training, Implementation and Validation

To leverage robust, pre-existing feature representations, we initialized all models that was pre-trained on the

ImageNet dataset (Krizhevsky et al., 2012). Following this initialization, we fine-tuned each model on our

datasets. This fine-tuning process was performed independently to the baseline flat species classifiers, the genus-

level classifiers for our hierarchical model, and seven distinct species-level classifiers, per polytypic genus.
During the model fine-tuning phase, we used the Stochastic Gradient Descent (SGD) optimizer, an algorithm

that iteratively adjusts the model's parameters to minimize prediction error. The model's training process
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involved 50 epochs, meaning the network reviewed the entire training dataset 50 times to progressively learn the
features. During this process, images were processed in groups of 16 (a batch size of 16). After each batch, the
model's internal parameters were adjusted to improve its accuracy. The magnitude of these adjustments was
controlled by a dynamic learning rate, which started at 0.01 and was reduced using a StepLR scheduler. This
scheduler multiplied the learning rate by a factor of 0.8 every 10 epochs. To ensure the model learned
generalizable patterns rather than simply memorizing the training data, we applied a regularization technique
called dropout, which randomly ignored 50% of the network's neurons during each training step
(Supplementary Table S4). Similarly, the classifiers in the module for classification.suchyas SLP and MLP
were trained using the same parameters except that we set the dropout rate to 0.7 All ‘expefiments were
conducted using a GeForce RTX 3090 GPU (VRAM 24GB), within a Conda v.23.3 environment running Python
v.3.9.

To validate our inherently hierarchical, feature fusion network, we benchmarked it against two single-
modality baseline models trained on either the cranial (CA10)-or déntal (TA10) datasets exclusively. To isolate
the contribution of the hierarchical method itself, these baseline models were evaluated using both a direct flat
and a two-step hierarchical classification strategy. To evaluate the censistency of network performance and
reduce the impact of data partitioning on the results; we€ employed a five-fold cross-validation approach. We
specifically selected k=5 due to the highly imbalanced nature of our dataset, which contains numerous rare
species (15 with <5 specimens). This choice prevides largét test.folds (20% of the data) compared to a higher
k-value, ensuring that rare species are represented in each$plit, thus yielding more stable and reliable
performance estimates (Wong & Yeh, 2020). T this‘protocol, the dataset was partitioned into five subsets of
approximately equal size, with ¢ach subsetused once for testing while the other four were used for training.

Given the varying nufber ‘of“images_per species and the presence of partially damaged specimens, we
investigated how these factors might affect identification accuracy. To assess this, we conducted correlation
analyses using three machine learning regression models, namely, Decision Tree (Kotsiantis, 2013), Gradient

Boosting (Bentéjae.ct al%.2021); and Random Forest (Paul et al., 2018).

Object detection-based automatic annotation for teeth
To streamline the4ime-consuming process of annotation, we developed a automated pipeline using the state-of-
the-art YOLOVS5 family of object detection models (Jocher et al., 2022). The objective was to train a model that
could accurately replicate our manual annotation process.

We began by creating a ground-truth dataset (DS0), where each of the 594 cranial images in our training
set was manually annotated in Labellmg with distinct bounding boxes for every individual tooth and auditory
bulla (AB). To ensure the model's robustness, we then expanded this dataset tenfold to create DS10, using a
variety of data augmentation methods including mirroring (up-down, left-right, and mixed), random

interpolation resizes (600x600, 960x960, and 1600x1600 pixels), 90-degree rotations (clockwise and
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counterclockwise), and the addition of Gaussian noise (Wan et al., 2023). It is of note that YOLO training and
testing does not require cropping the teeth and AB to generate a new image.

The evaluation was based on standard object detection metrics, including precision, recall, and mean
average precision (mAP) (Supplementary Text 1). This involved two sequential steps. First, to select the best
architecture, we compared several pre-trained YOLOVS5 variants at a standardized 640%640 pixel resolution. The
largest model, YOLOv5x, was chosen as it achieved the best overall performance (Supplementary Table S5).
Second, recognizing that object detection accuracy is highly sensitive to input resolution, we benchmarked the
selected YOLOvV5x model across a range of resolutions (from 640x640 to 1600x1600), . Our findings revealed a
clear performance trade-off; we selected 1280x1280 as the optimal resolution as it achieved the highest score on
the rigorous mAP@][.50:.95] metric (81.5%) with only a negligible sacrifice in peakirecall/(Supplementary
Table S5; Figure S5).

Finally, the trained YOLOvV5x model (at 1280%1280 resolution) was used tospredict'bounding box coordinates
on our test set of cranial images. These automatically generated/Coordinates were‘then used to create a new
dental image set, DTO, by following the exact same "crop and.stitch' procedure used for the manually annotated
TAO dataset. Finally, to measure the downstream impact of-this autemation; we assessed all models that rely on
dental imagery. We compared the species identificationaccuracy;of the teeth-only and feature fusion networks
when using the automatically generated DTO dataset against/their respective baseline performances with the

manually annotated TAO dataset.

RESULTS

We evaluated identification accuraCy using ctanial (CA10) and dental (TA10) datasets separately with EB7, as
well as a combined approaeh utilizing our feature fusion network that integrates both cranial and dental data.
The flat models trained individually“on'the cranial and dental datasets achieved accuracies of 90.5+1.6% and
91.242.3%, respectively. In comparison, the flat feature fusion-based model achieved an average accuracy of

92.5+1.8%, though the improvement is marginal (paired t-test: p>0.06) (Table 1).

Table 1. Identification accuracy achieved using EB7 trained individually on the cranium and teeth, as well as
feature fusion networks utilizing both cranium and teeth. We employed both flat and hierarchical strategies for
identification. Bold indicates the accuracy obtained using HISNET-FF.

EB7-cranium EB7-teeth feature fusion
accuracy (%) accuracy (%) accuracy (%)
Flat ident. All species 90.5£1.6 91.2+2.3 92.9+1.8
All genera 98.8+0.9 98.3+1.2 99.6+0.4
All species 93.9+2.1 93.24+2 .4 96.5+1.3
Euroscaptor (9 spp.) 79.7£2.9 75.148.5 88.3+6.1
Mogera (9 spp.) 89.0+3.6 89.0+6.0 93.243.7
.Hiere.lrchigal Parascaptor (3 spp.) 92.7+7.4 94.70+4.4 96.4+8.1
identification Scapanus (4 spp.) 98.0+4.5 98.0+4.5 98.0+4.5
Scaptonyx (3 spp.) 79.7+6.3 86.4+2.2 91.1+4.1
Talpa (7 spp.) 100.0+0.0 96.3+3.2 100.0+0.0
Uropsilus (5 spp.) 93.3£7.0 88.3+13.9 95.0+7.2
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Under the hierarchical strategy, all models achieved exceptional genus-level accuracy, with HISNET-FF

performing best (99.6+0.4%; Supplementary Table S6). At the species level, all three hierarchical models
outperformed their respective flat identification counterparts, improving the accuracy by 2.0—4.0% (paired t-test:
EB7-cranium, p=0.021; EB7-teeth, p=0.008; HISNET-FF, p=0.0035). The HISNET-FF model maintained
consistently high performance (mean=96.5+1.3%; Figure 2) significantly outperformed both the hierarchical

cranium (p=0.027) and the teeth (p=0.029) model. This superiority was consistent s all seven polytypic
genera, where specific error patterns are visualized in confusion matrices (Figure 3).
100 -

W EfficientNetB7(SAL10)

EfficientNetB7(TA10)

BN HISNET-FF(SA10+TA10) 98.6
98 -

Accuracy(%)

1 2 3 4 5

To understand

the mechanism behind HISNET-FF's superior accuracy, we analyzed the misclassified
specimens from our five-fold cross-validation (Supplementary Table S7). Overall, 26 out of 747 specimens
were misidentified, with all errors occurring within polytypic genera, primarily talpine Euroscaptor and Mogera,
which might be due to subtle interspecific morphological differentiation that is characteristic of these diverse
genera. A comparative analysis of errors between HISNET-FF and the hierarchical single-modality models
trained on cranium and teeth revealed benefits of feature fusion. Where at least one of the two single-modality
models made a correct identification, HISNET-FF also produced the correct classification in almost every case,
with only two exceptions. On the other hand, we identified five specific cases where both the hierarchical EB7-

cranium and teeth models failed, HISNET-FF made the correct identification.
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Figure 3. Confusion matrix heatmaps detailing the-species-leyel identification performance of HISNET-

FF within the seven polytypic genera, Each panel'shows the'classification results for a specific genus from a

single test set, illustrating typical erfor=pattetns=The color intensity corresponds to the accuracy of the species

identification.

To assess whether,our modelswas biased against rare species, we tested for a correlation between sample

size and identification accuracy./We found no evidence of a significant negative relationship (Spearman's p=—

0.188, p=0.18%), indicating-that the model is robust to the inherent data imbalance. For instance, of the 14 species

with six#or ‘fewer speeimens, all but one (Uropsilus nivatus, 80% accuracy) were classified perfectly

(SupplementaryTableS8). We therefore conclude that sample size is not a primary limiting factor for achieving

high identification accuracy with our framework.

A significant portion of small mammal skulls in museum collections are partially damaged due to the use

of snap traps during collection, with about 10% affected in our case. HISNET-FF achieved 91.6% accuracy for

damaged cranium compared to 97.0% for intact ones (Supplementary Table S9; Supplementary Figure S6),

indicating a modest but noticeable impact of damage on identification accuracy. Despite this reduction, HISNET-

FF's performance significantly surpasses EB7 individually trained on craniums and teeth, which yields 80.8%

and 78.1% accuracy, respectively.

Building on these individual analyses, we investigated the combined effect of sample size and specimen

damage on accuracy using three machine learning-based correlation analyses. The results revealed a synergistic
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effect: while each factor alone had a low correlation with accuracy (R?<0.3; Supplementary Table S10), their
combined influence was more substantial (R*>0.4). This interaction was strongest for the cranial-based and

HISNET-FF models (R>>0.5).

Automatic annotation of teeth streamlining species identification

We implemented YOLOVS to automate the annotation of teeth and auditory bullaec (AB). After comparing
several variants, the YOLOv5x model at a 1280x1280 resolution was selected fopsitsysuperior performance
( Supplementary Figure S7). This optimized model proved highly effective, achieving.a-precision of 97.9%, a
recall of 97.8%, and a rigorous mAP@][.50:.95] of 81.5% (Supplementary Table S5). The lowestjrecall rates
were for the AB (95.8%), the second upper premolar (P2, 96.8%), and the secondjupper incisor (12, 96.9%),
which is expected given that AB are often damaged and 12/P2 are the smallestitecth (Supplementary Table
S11).

To evaluate the downstream effect of our automatic annotation' strategy, we.compared the final species
identification accuracy of our network configurations when using manually annotated dental images (TAO)
versus those generated by our automated YOLOvV5x pipeline-(DT0)*T he-results show that for HISNET-FF, using
the automated annotations yielded a species identification accuracy of 93.5%, representing a marginal decrease
from the 95.4% achieved with manual annotations. Thisiperformance drop can be attributed to three additional
misclassifications unique to the automated dataset; all seyenierrors from the manual set were replicated in the

automated results. automated This trend| of .a slight performance reduction was consistent across all tested

approaches (Figure 4).
96 -
Manually Labeled 95.4
Automatically Labeled
94 - 94.0
935 935
=
=
€ o- 92.1
3 91.5
3
< 90.8

90 -

88.9

88

Hierarchical Feature
EB7 EB7  Fusion H'ONET-FF

Figure 4. Comparison of species identification accuracy using manually versus automatically annotated
dental images. The grouped bar chart displays the final accuracy for four different model configurations. For
each configuration, performance is compared when using manually labeled dental images against those

generated by our automated YOLOvV5x pipeline.
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To assess the potential broad application of our automatic annotation method, we tested it on diverse
insectivorous mammals not trained previously. These included a recently described talpid mole (Alpiscaptulus
medogensis), five erinaceids (Erinaceidae), five shrews (Soricidae), a tree shrew (Scandentia) as well as three
Afrotherian species. YOLOv5x model effectively recognized 92.0% of the teeth and AB (Supplementary
Figure S8), though a high percentage of teeth were not assigned to the proper labels (recall=0.46, precision=0.41,
mAP@0.5=0.39, mAP@][.50:.95]=0.33).

DISCUSSION

Our results establish that an integrated framework combining feature fusion and a‘hieratchieal; strategy is
essential for overcoming the inherent limitations of standard single-stream CNNs 'in“complex morphological
identification. Such models are limited in their ability to resolve global cranial.architecture-while capturing fine-
grained dental features, often failing to register critical diagnostic details liké.cusps and cingula (Lin et al., 2021;
Singha et al., 2024). Our dual-stream fusion architecture, directly addresses.sthis by creating a more
comprehensive, dual-scale representation.

The efficacy of this approach is underscored by several-analyses. Firsty Grad-CAM heatmaps reveal that a
cranium-only model is effectively blind to the dental region, confirming the need for a dedicated feature stream
(Supplementary Figure S9). Second, our error analysis shows' that the fusion model successfully leverages
complementary information: it not only reinforces.cortecticlassifications when one of the single-modality models
succeeds but can also discern novel diagnesti¢ patterns*tosCorrect instances where both baselines fail
(Supplementary Table S7). Furthermote,sHISNET-FF shows strong performance on rare species (13 of 14
species with << 6 images were [idéntified perfectly), suggesting our approach is not compromised by class
imbalance which might benefit frompretraining on ImageNet. However, we consider this result preliminary and
believe more fine-grained experiments are needed to definitively validate the model's performance on rare taxa.
In conclusion, HISNET-FF achiéves its superior performance by effectively integrating non-overlapping
diagnostic information cembined with a hierarchical strategy to produce a more accurate classification.

We recently  developed HIS-NET, another EfficientNet-based hierarchical classifier that utilized up to four
different cranial'and mandibular views per specimen (dorsal, ventral, lateral cranium, and lateral mandible; He
et al., 2025). While both models share a hierarchical strategy, HISNET-FF introduces a novel architecture: it
replaces the multi-view input with a single-image workflow, achieving superior accuracy through the feature
fusion. The high performance of HISNET-FF on talpids suggests its potential for broader application,
particularly for other speciose mammals (e.g., rodents, bats and primates) where diagnostic characters present in
craniodental morphology.

The success of this feature-fusion framework opens up several avenues for future research. An immediate
next step is to synthesize the strengths of our prior multi-view HIS-NET and the current HISNET-FF into a more

comprehensive multi-view feature fusion architecture using a multi-task approach (Liu et al., 2019). Such a

? Zoological
‘ Research




model would integrate features from dorsal, ventral, and lateral views simultaneously, creating a holistic
morphological representation. Furthermore, beyond just teeth and auditory bullae, other diagnostic regions could
be annotated, and dental features themselves could be refined into their constituent components, such as the
trigonid and talonid, or even individual cusps. Ultimately, creating a holistic taxonomic identification system
would require moving beyond the fusion of image-based features. This would likely involve leveraging more
advanced architectures, such as Large Language Models (LLMs), to integrate the morphological outputs from
our network with disparate data types such a DNA sequences, distributional and ecologieal information (Pyron,
2023).

While powerful, the current framework is fundamentally an identification togl for knewnsSpecies. It is
warranted to move beyond the current supervised learning paradigm to developimedels_capable of Novel
Category Discovery (NCD)(Vaze et al., 2022), which not only recognize knownrspecies=butalso to flag novel
or anomalous specimens that fall outside the known morphological space, theteby transforming this tool from a
simple identifier into an engine for taxonomic discovery (Baditli et al., 2023).

Our automated annotation tool, powered by YOLOvVSx; proyes to be a highly effective and practical
component of our workflow. The use of automated annotatiens results«in a.final species identification accuracy
0f'93.5%, which is an acceptable trade-off compared to th€ 95.4% achieved with labor-intensive manual labeling.
The implications of this minor accuracy drop should.be c¢onsidered in context. Our error analysis reveals that the
vast majority of misidentifications are between closely related; congeneric species (genus level accuracy 99.6%).
While this requires caution for formal taxon@mic work, this levelfof precision is often sufficient for many large-
scale ecological and macro-evolutionary'studies-where genus-level patterns are of primary interest. Furthermore,
as discussed previously, this residual error tate could likely be reduced even further by incorporating non-
morphological data such as-DNA sequences;and geographic distribution into a more integrative framework.

Our tests of the autemated annotation tool on untrained insectivorous mammals underscored both its
potential and its current limitations. The model proved highly effective at the general task of localizing
craniodental, features, detecting.92% of teeth and auditory bullae. However, its performance on classifying these
featuresto specific teoth positions was poor (precision: 41%; recall: 46%), demonstrating that the model, trained
exclusively on talpids;‘lacks broad taxonomic generalizability. This limitation is not a conceptual flaw, but a
data-driven one. We are confident that by incorporating a diverse array of annotated specimens from other key
mammalian orders (e.g., rodents, bats, shrews), the YOLOvVS framework can learn the varied dental formulas
and morphologies necessary for high-accuracy, cross-family annotation.

The potential scientific impact of our tools is notable. Large-scale research in evolutionary biology and
ecology often relies on numerous specimens, yet is frequently bottlenecked by the laborious process of manual
identification (Pineda-Munoz et al., 2021; Saarinen & Lister, 2023). Having demonstrated high efficacy on a
challenging taxonomic group, our automated species identification approach will accelerate research and enable

new, large-scale, data-driven investigations.
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Supplementary text: The evaluation metrics used in this study

To validate the performance of the method proposed in this paper, we adopted four commonly used
evaluation metrics: Top-1 accuracy, precision, recall, and mean average precision (mAP@0.5) and

mAP@][.5:.95].

1. Top-1 accuracy

This metric measures the standard classification accuracy of the species identification models. An image is
considered correctly classified if the single class with the highest predicted probability (the:!"top 1" prediction)
matches the true label of the specimen. The final accuracy is the ratio of correctly classified images to the total

number of images in the test set.

TP+TN

Total number of samples

(1)

Topl accuracy =

In this formula, TP refers to true positives and TN referssto true negatives.

2. Precision
Precision evaluates the accuracy of the,0bjeet,detection'model's predictions. It answers the question that of
all the bounding boxes the model predicted,iwhatfraction were:Correct. A high precision score indicates a low

rate of false positives (i.e., the model rarelydeteets objects that are not actually there).

TP
TP+FP (2)

Precision =

In this-formula, TP'refers.to true positives and FP refers to false positives.

3. Recall
Recall evaluates the completeness of the object detection model's predictions. It answers the question that
of all the actual-ebjects that exist, what fraction did the model successfully find? A high recall score indicates a

low rate of false negatives (i.e., the model rarely misses existing objects).

TP

Recall = N 3)

In this formula, TP refers to true positives and FN refers to false negative.

4. Mean average precision (mAP)
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mAP is the primary metric for evaluating the overall performance of an object detection model, as it provides
a single value that summarizes both precision and recall across all object classes. It is calculated by averaging
the average precision (AP) over all classes.

mAP@0.5: This metric calculates the mAP using a fixed Intersection over Union (IoU) threshold of 0.50.
AnIoU of 0.50 means a predicted bounding box is only considered a True Positive if its overlap with the ground-

truth box is 50% or greater. This metric provides a good measure of the model's general detection capability.
mAPs = =&, AP;(IoU = 0.5) (4)

mAP@)].5:.95]: This is a more rigorous and comprehensive metric. It caleulates the.mAP:at ten different
IoU thresholds (from 0.50 to 0.95, in steps of 0.05) and then averages theseValiess It rewards models that
produce more precise and tightly-fitting bounding boxes, providing a more thorough assessment of localization

accuracy.

MAPsq_gs = == %12, AP{(loU =40.5 +.0.08x(i — 1)) (5)
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Supplementary figures
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Figure S1. Workflow for the preparation of-the-cranial and dental image datasets. The diagram illustrates
the preprocessing pipeline useditoigenerate two parallel datasets from the original specimen photographs. The
original image is cropped+to 1Solate a single cranium, removing the background. The resulting rectangular image
is then padded with black pixels to create a square aspect ratio. This final image becomes part of the "Cranial
image dataset,” which isssubsequently divided into training and testing sets. The Teeth and Auditory bullae (AB)
Dataset starting'with the same cropped cranial image, all teeth and auditory bullae are first manually annotated.
These annotated-tegions are then isolated by masking the remainder of the cranium. This masked image is also
padded to create a square aspect ratio, forming the "Teeth image dataset." This dataset is then similarly divided

into training and testing sets.
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with resolution of 224x224 pixe
recommended input i anging from 224x224 pixels to 600x600 pixels. The results show that

the EfficientNet family, partic EfficientNetB7, provided the highest accuracy.
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Figure S3. Effect of data augmentation on the training performance he EfficientNet-B7 model. Each

curve represents the species identification accuracy on.the=test 1,50 training epochs, using different

training data strategies: no augmentation (CA0), 5-fold a on (CAS5), 10-fold augmentation (CA10), 20-

(CA-EQ). The results indicate that the 10-fold

ost stable final accuracy (91.5%).
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Figure S5. Performance comparison of different Y

Average Precision at an IoU threshold of 0.50

hiresholds from 0.50 to 0.95 (mAP@][.5:.95]).
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Figure S6. Species identification accuracy for intact versu
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Figure S7. Effect of varying input resolutions o mance of the YOLOv5x model. This analysis

|

identifies 1280x1280 as the optimal resoluti alance of performance across all metrics with

only a negligible trade-off in pe
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Hemiechinus aethiopicus

Hylomys peguensis

Erinaceus europaeus Echinosorex gymnura

Scutisorex somereni Chimarogale platycephala Crocidura russula

Echinops telfairi Chrysochloris stuhlmanni Tupaia belangeri

Alpiscaptulus medogensis Rhynchocyon cirnei

Figure S8. Qualitative results of the Talpidae-trained /YOLOvS5x model applied to untrained

insectivorous mammal taxa. We included.fiveerinaceids(Erinaceidae, first row), five shrews (Soricidae,

second row), a talpid mole" (dlpiscaptulus medogensis), a tree shrew (Tupaia belangeri), and three

Afrotherian species{(Rhynchogyon”cirnei, Echinops telfairi and Chrysochloris stuhimanni). The model

demonstrated a detection rate/of 92% for teeth and auditory bullae, calculated as the ratio of detected

structures to"the totalinumber present. The other Performance metrics are recall=0.46, precision=0.41,

mAP@0.5=0.39, mAP@][.5:.95]=0.33. These results suggest the YOLOv5x can detect teeth and auditory

bullae in other groups of insectivorous mammals. The figure shows the model's ability to locate teeth and

auditory bullae (bottom row of each pair) on cranial images (top row) from species it was not trained on.

The model successfully localizes the features, but as noted in the text, its ability to assign correct specific

labels is limited in taxa with different dental formulas.
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stage 1 (layer 1) stage 2 (layer 5) stage 3 (layer 12) 3 stage 3 (layer 12)

stage 5 (layer 29)

stage 7 (layer 44)

stage 7 (layer 49) stage 7 (layer 52) stage 8 (layer 56) stage 7 (layer 49) stage 7 (layer.52) stage 8 (layer 56)

Figure S9. Gradient-weighted Class Activation Mapping (Grad-CAM)_heatmaps illustrating the
feature focus of single-modality models. The color scale indicates regions of high (red) to low (blue)
importance for the model's classification decision: A: Heatmaps from an EB7 model trained only on cranium
data, showing that the model learns featuressacross the ‘eraniunrbut largely overlooks the dental region; B:
Heatmaps from an EB7 model trained only“on-dental data, showing that the model focuses exclusively on

the teeth and auditory bullae,
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