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Abgract

The sky islands of Southwest China, characterized by dramatic topographical and climatic
variations, are prominent hotspots of biodiversity and endemism. Organisms inhabiting middle-to-
high elevation habitats in this region are geographically isolated within distinct mountain chains,
which over geological time have been subjected to isolation-by-distance and isolation-by-
environment. These processes have led to profound allopatric diversification and strong
phylogeographic structuring, resulting in a plethora of genetically distinct cryptic species, as is
becoming increasingly evident for many small mammal families. However, morphological
conservatism can pose significant challenges in delineating these clades within species complexes.
In this study, we leverage artificial intelligence technologies to unravel the hidden species
diversity of moles (family Talpidae) in Southwest China's sky islands. We first employed
ultraconserved elements (UCES) to investigate the evolutionary history of talpid moles, conducted
molecular species delimitation using mitochondrial and multi-locus genes, and utilized both
traditional and geometric morphometrics to examine their morphological disparity. To address the
challenges of morphology based cryptic species identification, we developed a deep learning
Hierarchical Identification of Species NETwork (HIS-NET) to create an image-based model that
analyzes four different views of the skull/mandible to distinguish genera and species
hierarchically. HIS-NET not only achieved expert-level accuracy in species identification but also
effectively distinguished between cryptic and known species, aiding in the identification of key
morphological variation intervals. Our results support the recognition of allopatrically distributed
taxa in Euroscaptor and Parascaptor as full species, thereby confirming that species diversity in
this region remains underestimated. Beyond advancing our understanding of speciation in this
unique and fragile ecosystem, our study serves as a proof-of-concept, demonstrating the power of
deep learning in unraveling hidden biodiversity within this and other species complexes.
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1 Introduction

The mountainous regions of Southwest China, situated adjacent to and east of the Qinghai-
Tibet Plateau, are characterized by a complex geomorphological history that produced dramatic
topographical landscapes ranging from 300 m to >7,000 m above sea level i, Shaped by the uplift
of the Qinghai-Tibet Plateau, this region comprises a series of mountain chains that are physically
isolated from one another by basins, valleys and extensive drainage systems that predominantly
run in north-south directions . This uneven terrain supports varied climates across both vertical
and horizontal space, providing a mosaic of ecologically diverse habitats #!. Another distinctive
feature of this region is the discontinuous distribution of similar habitats at medium to high
elevations across different mountain areas, creating a unique geographical backdrop that has
earned it the "Southwest China sky-island complex" designation .

The concept of sky islands, originally coined to describe isolated mountain ranges in the
southwestern United States and northern Mexico © ¢ applies particularly well to these
mountainous regions of Southwest China. Indeed, the progressive uplift of this region through
geological time created an archipelago-like array of high-elevation “island” ecosystems separated
by intervening lowlands that led to the fragmentation of plant and animal populations inhabiting
middle-to-high elevation environments across the mountain ranges [ As such, this geographic
panorama, in conjunction with climatic fluctuations such as the Pleistocene glaciations, has
significantly influenced evolutionary processes and speciation events, resulting in a complex
tapestry of endemic and relict species across these sky islands 5.9,
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The Southwest China sky island complex has spawned globally important biodiversity
hotspots (1 that harbor an exceptionally high level of species diversity. For example, this region is
home to over 12,000 described species of vascular plants, of which 29% are endemic 0 and
hosts approximately 50% of China's bird and mammal species (2 However, the full extent of
biodiversity in this region remains underexplored, largely due to the presence of cryptic species (23]
— morphologically similar but genetically distinct lineages — which pose a significant challenge to
biodiversity assessments and conservation efforts [ *°!,

The primary mechanisms driving diversification and speciation in sky island complexes are
isolation-by-distance (IBD) and isolation-by-environment (IBE), describing isolation driven by
geographic distance or as a product of environmental dissimilarity, respectively (6] Both
processes may eventually result in allopatric speciation as populations of organisms in the newly
isolated habitats can diverge into distinct genetic lineages across the chain of sky-islands. This
evolutionary pattern is evident in many plants, insects, amphibians, and small mammals inhabiting
the mountainous region of southwestern China ®"?4. Accordingly, previously recognized species
with broad distributions are now classified into a complex of multiple species that exhibit patterns
of allopatric speciation across different mountain islands 2. For instance, the rodent genus
Typhlomys, originally thought to comprise a single species widely distributed throughout southern
China, has been found to comprise at least seven distinct species and undescribed cryptic lineages
(23241 All of these newly recognized species show some degree of geographical isolation, with
each genetic lineage confined to a specific mountainous area. These findings imply that other
widely distributed small mammal families inhabiting this region may also house undescribed
species, thereby hampering our ability to fully assess the species diversity in the Southwest China
sky island complex. The mole family Talpidae serves as a prime example, as cryptic diversity is
likely widespread in this region but remains largely unresolved 4%,

Classified within the order Eulipotyphla, talpids are widely distributed across Europe, Asia,
and North America and are characterized by a range of ecological and morphological
specializations. These include the shrew-like moles of the monogeneric (Uropsilus) subfamily
Uropsilinae which possess echolocation abilities *®), a unique trait in the family, though are
primarily terrestrial in their ecological niche. The remaining clades belong to the subfamily
Talpinae and have evolved to exploit a diverse variety of habitats: the semi-fossorial shrew moles
(tribes Scaptonychini, Urotrichini, and Neurotrichini), the semi-aquatic desmans (Desmanini), and
the fully fossorial (Talpini and Scalopini) and semi-aquatic/semi-fossorial (Condylurini) moles.

As of 2018, Wilson and Mittermeier *°! recognized 54 extant talpid species within 18 genera
globally (Table S1) though other recent studies have revealed additional new ?"*% and cryptic
species 14153331 ang even a new genus (Alpiscaptulus)®®. The mountains of Southwest China,
which harbor 17 currently recognized species, are not only a hotspot of this family’s species
diversity but are also home to the highest number of cryptic species, particularly within Uropsilus
(1433 Eyroscaptor B, Parascaptor ® ** 3 and Scaptonyx ® **1. While a number of distinct
talpid lineages identified in these studies have since been recognized as full species — e.g.,
Uropsilus nivatus, U. atronates ?*!, Euroscaptor orlovi, E. kuznetsovi ®!, Scaptonyx wangi and S
affinis *! - others are yet to be investigated. Importantly, species in these genera are middle-to-
high elevation inhabitants that exhibit clear sky-island distribution patterns ™% ! This
discontinuous distribution results in diversification following basic IBD or IBE principles, that has
led to strong genetic structuring across the region. However, the similar habitats found among the
many montane islands have also fostered morphological conservatism B9, resulting in many of
these same genetically distinct lineages having a high degree of similarity in external and
craniodental features. Thus, while molecular-only based approaches have detected cryptic species
following the phylogenetic species concept (PSC), they often leave open the question of whether
these genetic lineages are morphologically diagnosable. This challenge is particularly pertinent
when considering either the diagnostic morphological phylogenetic species concept (dmPSC [401)
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or the unified species concept (USC [41]), which both require diagnosable morphological
differences among putative species, thereby underscoring the need for tools that can bridge the gap
between molecular structuring and full species validation.

In recent years, deep learning has revolutionized classification and identification across
various fields (2. Convolutional neural networks (CNNS), in particular, have demonstrated
remarkable efficacy in image classification tasks, even without additional contextual information
14341 The power of CNNs lies in their ability to automatically learn hierarchical feature
representations from raw image data !, making them particularly well-suited for tackling
complex pattern recognition problems in biology, including species identification. Indeed, CNNs
have been successfully applied to the identification of plant ¥ and animal species ),
demonstrating their efficacy and broad potential in species identification. However, despite their
successful use in invertebrates 1!, the application of CNNs in the identification of vertebrate
species remains surprisingly limited. Only a few studies have explored the potential use of CNNs
for the identification of mammal and reptile species, and these studies typically included only a
small number of closely related or congeneric species ¥ *°!. Accordingly, there is a conspicuous
lack of comprehensive, family-level studies that explore the capacity of CNNs to discern
morphological differences at both species and higher taxonomic levels.

The classification system in taxonomy is inherently hierarchical, progressing from species to
genus to family levels and beyond. Taxonomists recognize that morphological differences at
various taxonomic levels, such as between genera and between congeneric species, are distinctly
different. Hierarchical classification using deep learning for multi-label image categorization is a
well-established approach in the information science domain, and can significantly enhance
information retrieval efficiency and accuracy Y. However, the application of hierarchical
classification strategies to species identification has been surprisingly limited with only a few
studies having explored this approach in the context of biological taxonomy (52,531, Additionally,
most previous studies have predominantly relied on either single or multiple photographs of the
same view, potentially missing crucial diagnostic features that are only evident from different
angles or on structures obstructed from view. To our knowledge, few studies have examined
whether integrating multiple views of specimens capture more key diagnostic characters and
improve identification accuracy .

To address these limitations and explore the full potential of CNNs in vertebrate taxonomy,
we conducted an integrative evolutionary history study on the Talpidae family with a focus on
exploring the cryptic species diversity in the Southwest China sky island complex. We first
generated an ultraconserved element (UCE) dataset to investigate the molecular phylogenetics of
talpids and applied species delimitation methods employing mitochondrial and nuclear genes to
confirm any genetically distinct lineages observed (Table S2). We then applied both traditional
and geometric morphometrics to test whether the identified cryptic species are also phenotypically
distinct from congenerical recognized species. Our final aim was to evaluate the potential of deep
learning techniques to uncover morphological differences that may be imperceptible to traditional
methods to accurately distinguish previously recognized from cryptic talpid species. To this end,
we developed a novel Hierarchical Identification of Species NETwork (HIS-NET) model using
CNN, which integrates multiple views of the skull and mandible of voucher specimens for species
identification. This research not only advances our understanding of talpid diversity in the
Southwest China sky island complex but also provides a proof-of-principle for the application of
deep learning in resolving complex taxonomic challenges.

Material and M ethods

2.1 Molecular phylogeny and species delimitation
2.1.1 Taxonomy and taxon sampling
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We followed the taxonomy proposed by Wilson and Mittermeier %61 hut included updates
in subsequent studies thereafter, expanding the Talpidae family to 66 species within 19 genera
(Table S1). We propose several candidate species within Euroscaptor (n=2), Parascaptor (n=2),
and Uropsilus (n=1) in southwestern China, based on their genetic and, where applicable,
morphological distinctiveness. We collected a total of 61 specimens representing 60
species/candidate species for high-throughput sequencing (Table S2), that included 44 talpid
species, 11 shrews (Soricidae), 5 erinaceids (Erinaceidae), and 1 solenodon (Solenodontidae).
Tissue samples preserved in 95% ethanol were obtained from various sources, including loans
from the following institutions: Kunming Institute of Zoology (KIZ, China), National Museum of
Nature and Science (NMNS, Japan), National Museum of Natural History (USNM, USA), Burke
Museum of Natural History and Culture (NWBM, USA), Field Museum of Natural History
(FMNH, USA), New Mexico Museum of Natural History (NMMNH, USA), as well as several
personal collections (Table S2). To test the validity of cryptic species, we also collected
specimens from southern China and Myanmar.

2.1.2DNA Library preparation

Total genomic DNA was extracted from tissue samples using a Qiagen DNeasy Blood
and Tissue Kit (Qiagen). The extracted DNA was randomly fragmented to sizes ranging from 200
to 400 bp using the NEBNext dsDNA Fragmentase (New England Biolabs, Canada). Library
construction was performed using the NEBNext Fast DNA Fragmentation & Library Prep Set for
lon Torrent (New England Biolabs, Canada), with each library incorporating a unique barcode
adapter from the NEXTflex DNA Barcodes for lon Torrent (BIOO Scientific, USA). We
conducted size selection using a 2% E-gel on an E-Gel Electrophoresis System (Invitrogen,
Canada). We re-amplified the libraries using a NEBNext High-Fidelity 2X PCR Master Mix (New
England Biolabs, Canada), and purified using Dynabeads Magnetic Beads. Following library
construction, we determined the concentrations using a Qubit 4 fluorometer and Qubit dsDNA
Assay (Thermo Fisher Scientific, Canada).

2.1.3 UCE captur e and sequencing

For ultra-conserved elements (UCE) capture, we utilized myBaits probes synthesized by
Arbor Biosciences (Ann Arbor, MI, USA). Four DNA libraries of similar quantity were pooled
prior to hybridization. In-solution hybridization was performed following the myBaits
manufacturer's protocol. The enriched libraries were purified using Dynabeads Magnetic Beads
and amplified with a NEBNext High-Fidelity 2X PCR Master Mix (New England Biolabs,
Canada). The indexed captured libraries were pooled in equal concentrations and sequenced on an
lon Torrent PGM or lon Torrent Proton sequencer.

2.1.4 Data processing and phylogenetic analysis

Raw data were automatically de-multiplexed and converted to FASTQ format on the
Torrent Suite v4.0.2 software (Thermo Fisher Scientific, Canada). Given that lon Torrent
platforms produce single-end (rather than pair-end) reads, we pre-processed the data using
packages optimized for single-end reads following He et al. B7, Initially, we trimmed adapters and
barcodes using AlienTrimmer v0.4 P% as part of the ClinQC v.1 package with conservative
parameters (-k 15 -m 5 -1 15) . We then removed poor quality data, using the DynamicTrim
function of SolexaQA + +v3.1 B and eliminated duplicates using ParDRe ®®. Sequence
correction was performed using karect B9 and the data were used for downstream assembly.

For the UCE assembly, we followed the PHYLUCE v1.7 ! protocol "UCE
Phylogenomics" to extract UCE loci. Data were de novo assembled using SPAdes v3.1 51 The
original “uce-5k-probes” were used as references to extract UCE loci from the draft assembled
contigs. Additionally, UCE loci were extracted from publicly available (GenBank) genomes
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of Condylura cristata, Sorex araneus, Erinaceus europaeus, and Solenodon paradoxus, following
the PHY LUCE tutorial "Harvesting UCE loci from genomes". Loci present in at least 50% of taxa
were retained for further analyses. Each locus was trimmed using ClipKIT with the “kpic-smart-
gap” parameter to retain parsimony-informative sites with few gaps %21 Loci were then realigned
using CIAlign to remove divergent sequences, insertions, and sequences shorter than 100 bp t6s],
After data processing, 2989 UCE loci were retained, with an average of 2049 UCE loci per
sample.

2.1.5 Phylogenetic analyses

We conducted both concatenation and summary-coalescent species tree analyses using a
two-step strategy. First, we estimated gene trees for each UCE locus using RAXML-NG with the
following parameters: --brlen scaled --bs-trees autoMRE(1000) --bs-metric fbp,tbe 4 This
included simultaneous rapid bootstrap analyses and searches for the best scoring maximum
likelihood tree (--all). Subsequently, we employed TreeShrink %) to remove taxa represented by
very long branches from the corresponding UCE locus alignments. The pruned alignments were
then used for tree estimations.

For concatenated species tree estimation, we divided each UCE into three data blocks
(core, left flanking, and right flanking regions) using SWSC-EN %61 We determined the best
partitioning scheme using PartitionFinder 2 ") with the rclusterf search under the GTR+G model
based on AICc. The optimal scheme included 1032 partitions. The concatenated tree was then
estimated using RAXML-NG as described above.

For coalescent species tree estimation, gene trees for each UCE locus were estimated with
RAXML-NG. Branches with bootstrap supports lower than 10 were collapsed using nw_ed 8,
The species tree was then estimated using ASTRAL-1V v1.19 ],

2.1.6 Molecular speciesdeimitation

To extend our taxon sampling, we included sequence data from newly collected specimens
captured in Yunnan, Sichuan, and Myanmar representing Parascaptor sp.1, P. sp.2 and
Euroscaptor sp.1 in our species delimitation analyses (Table S2). For each specimen, we
amplified the complete mitochondrial CYTB gene and also amplified 11 nuclear genes (ADORAS,
APP, ATP7A, BCHE, BDNF, BMI1, BRCA1, CREM, PLCB4, RAG1 and RAG2) for a subset of
samples using the primers presented in 7. We were not able to collect additional Euroscaptor
sp. 2 specimens for this analysis.

We also retrieved available CYTB sequences for Euroscaptor (n=86) and Parascaptor
(n=10) from GenBank and combined them with our newly generated sequences for phylogenetic
analysis (Table S2). We first aligned the sequences using MUSCLE ™ and estimated the gene
trees using RAXML as described above. We then employed two single-locus species delimitation
methods: Automatic Barcode Gap Discovery (ABGD; [72]) and Assemble Species by Automatic
Partitioning (ASAP; [™*)). Additionally, we calculated pairwise K2P distances and generated a
genetic distance heatmap in R v4.4 using the packages ape [ and ggplot2 ["®!. The Parascaptor
and Euroscaptor datasets were analyzed separately.

Finally, we performed coalescent-based species delimitation analyses using 11 nuclear
genes, as implemented in BPP v4.7 (el Sample sizes for Parascaptor sp.1 and Parascaptor sp.2
were 4 and 16, respectively. The Euroscaptor analysis included 22 specimens: E. malayana (n=2),
E. klossi (n=1), E. kuznetsovi (n=8), E. orlovi (n=1), E. longirostris (n=4), and Euroscaptor sp.1
(n=6). We did not include Euroscaptor sp.2 because we had only two samples in both the
morphological and molecular data sets thereby precluding a robust examination of its taxonomic
status in this study. For the Parascaptor dataset, we employed the A10 model, which focuses
solely on species delimitation since only two putative species were included. For the Euroscaptor
dataset, we utilized both the A10 and A1l models, with the latter allowing for simultaneous


https://doi.org/10.1101/2025.03.06.641773
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.03.06.641773; this version posted March 11, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

species delimitation and species-tree estimation. We applied both algorithms 0 and 1, and
conducted six analyses for each dataset per model, using various combinations of parameters and
priors (Table S3).

2.2 Morphometric and geometric morphometric analyses
2.2.1 Traditional morphometrics

Fifteen craniomandibular variables were measured using a digital caliper graduated to
0.01 mm from 66 specimens of Parascaptor and 76 specimens of Euroscaptor (Appendix I): CIL
(Condyloincisive length), PIL (Palatoincisive length), PPL (Postpalatal length), CB (Cranial
breadth), 10B (Interorbital breadth), ZB (Zygomatic breadth), CH (Cranial height), UTL (Upper
toothrow length), P4-M3 (Distance from the upper fourth premolar to the upper third molar),
M2M2 (Maximum width across the upper second molars), BFM (Foramen magnum breadth),
LTR (Lower toothrow length not including first incisor), LLM (Lower molars length), ML
(Mandible length), HCP (Height of coronoid process). We conducted Principal Component
Analysis (PCA) and Canonical Variate Analysis (CVA) on log10-transformed variables using the
stats and Morpho packages ", respectively. The results were visualized using ggplot2 and plotly.

2.2.2 Specimen accession and photography

We photographed specimens housed at natural history museums in China, Vietnam,
Japan, Germany, and the USA (Appendix 1). Specimens at the Institute of Zoology, Chinese
Academy of Sciences (I0S); Kunming Institute of Zoology, Chinese Academy of Sciences (KI2);
Sichuan Academy of Forestry (SAF); Guangdong Institute of Zoology (G1Z); National Museum of
Natural Science at Taichung (NMNST); Smithsonian Institution National Museum of Natural
History (USNM); American Museum of Natural History (AMNH); Field Museum of Natural
History (FMNH); Museum of Comparative Zoology, Harvard (MCZ); National Museum of
Nature and Science of Japan (NSMT); Hokkaido University Natural History Museum (HUNHM);
University of Miyazaki; Institute of Ecology and Biological Resources of Vietnam (IEBR) were
photographed by K.H. Photos at the State Museum of Natural History Stuttgart (SMNS) were
taken by Q.M. Additional photos of two Russian desman specimens were taken by T. Martin and
C. Steinweg, while photos of two Galemys specimens were taken by J. Decher and C.
Montermann.

We utilized either a Nikon D300 or D7100 with a Nikon 105mm f/2.8G lens, or a Canon
EOS 7D Mark Il with an EF 100mm f/2.8L IS USM. Consistent and standardized criteria were
applied for dorsal, ventral, and lateral views of the skull, as well as the lateral view of the
mandible. A camera stand was used to stabilize the camera, with the skull or mandible placed on a
small plate approximately 10-30 cm below the lens, depending on the specimen size. All pictures
were taken on a blue background. A level was placed on both the camera and the specimen plate
to ensure the lens was perpendicular to the specimens. Additional lighting or a flash was used
when appropriate. Depending on the lighting and flash systems, which varied in different
museums, we adjusted the F-stop in the range of 13 to 23 and ISO from 200 to 1250 to ensure
high photo quality. Due to the requirements of deep learning, we included only species with at
least three specimens, excluding Alpiscaptulus medogensis and Euroscaptor sp.2, which each had
only two specimens available. In total, we collected 2998 photos representing 819 specimens from
18 (out of 19) talpid genera and 51 species/putative species.

2.2.3 Geometric morphometric analysis

We used the ventral view of the skulls for geometric morphometric analyses. Only
complete skulls were included for Parascaptor and Euroscaptor. A total of 38 specimens
representing P. leucura (n=13), Parascaptor sp.l (3), and Parascaptor sp.2 (22), and 55
specimens representing E. grandis (5), E. klossi (8), E. kuznetsovi (3), E. longirostris (12), E.
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malayana (6), E. micrura (10), E. orlovi (3), E. parvidens (4), and Euroscaptor sp.1 (4) were used.
The backgrounds of the images were removed using Adobe Photoshop. The analyses were
conducted as implemented in R v4.4. We utilized the outlineR package to generate the outlines of
the skulls. Subsequently, the Momocs package was employed to subsample 150 coordinates from
the existing points per specimen 78] We then performed Elliptical Fourier Analysis (EFA) to
quantify the shape of each outline. Following the EFA, we conducted PCA and CVA as described
above.

2.3 CNN based speciesidentification
2.3.1 Data labeling and manipulation

Each photo (see section 4.2.2) was labeled with the following information: genus and
species name, voucher ID, skull or mandible, and the view of the skull (lateral, ventral, or dorsal).
It is common for small mammal skull specimens in museums to be broken or have missing parts,
as many were captured using snap traps. Among the 819 specimens included in the data set, 133
had fewer than four images due to missing or completely broken cranial bones, while 203 images
were labeled as partly broken (Table S5). Minor damage such as missing zygomatic arches were
not considered as broken. We manually cropped the images to retain only the skull or mandible,
removing the peripheral areas. Then we standardized the images to square dimensions by padding
the shorter edges with black pixels. The dataset was then divided into training (data TrnO) and
testing (Tst0) sets with a ratio of 8:2. This division was performed at the specimen level, ensuring
that all images of a specimen were placed into the same dataset (T able S6).

2.3.2 Data augmentation

It is well-established that larger datasets lead to improved performance in deep learning
networks ", However, obtaining specimens of rare and newly recognized species, often
represented by only a few samples in museum collections, presents a significant challenge. To
address this limitation, we employed a comprehensive data augmentation strategy, introducing
minor distortions to images of the training data to mitigate overfitting during neural network
training 8 To achieve numerical balance among different genera, we applied higher data
augmentation factors to those with fewer samples. Specifically, we utilized between 3 to 14
augmentation techniques per genus including rotation (rotate 90, rotate 45), mirroring (horizontal,
vertical), masking (drop out, coarse drop out), blurring (gaussian, average, motion), noise injection
(salt and pepper, additive gaussian, impulse), and contrast change (gamma contrast, sigmoid
contrast) (Fig. S12). For genera with particularly few specimens (e.g., Desmana, Galemys, and
Scapanulus), we created duplicates of the augmented data and applied an additional augmentation
method, average pooling, to these duplicates, resulting in a 30-fold increase in the number of
augmented samples. The augmentation factors ranged from 4 to 30 at the genus level, with an
average augmentation factor of approximately 9 (Table S5).

2.3.3CNN selection

Different types of CNN architectures have varying feature extraction capabilities, with
shallow CNNs better suited for capturing low-level features, while deeper CNNs excel at
identifying more complex, high-level semantic information 81 To select the most suitable CNN
for talpid mole species identification, we compared various networks with different architectures,
complexities, and performance metrics. Specifically, we evaluated AlexNet, the EfficientNet
series 4, GoogleNet 3, MobileNet !, the ResNet series %), the ShuffleNet series %), and the
VGGNet series ). The parameters used per model are given in Table S7. To optimize
computational efficiency, we first standardized the image resolution to 224x224 pixels for both the
training and testing datasets. To improve network performance and species recognition accuracy,
we utilized transfer learning (s8] leveraging network parameters pre-trained on large datasets like
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ImageNet 89 Each network was trained and evaluated based on accuracy and computational
efficiency. Additionally, we assessed the impact of data augmentation by using training datasets
with (Trn1-224) and without (Trn0-224) data augmentation.

2.3.4 Imageresolution selection

Image resolution significantly impacts the performance of deep learning models [
Higher image resolution offers richer details, potentially enhancing classification accuracy, but
also increases computational complexity due to the larger number of model parameters. To
investigate this trade-off, we compared network performance across different resolutions:
224x224, 260x260, 300x300, and 380x380 pixels (Table S8). Given that the EfficientNet series
demonstrated the highest accuracy (see Results section), our analyses focused on EfficientNet BO,
B2, B3, and B4. Briefly, these networks differ in their network depth, width, and resolution, with
higher versions (B2, B3, B4) having increased capacity and complexity to capture more intricate
features compared to BO. Since data augmentation significantly improved network accuracy (see
Results section), we exclusively used augmented datasets in this and subsequent analyses.

90]

2.3.5Individual reconciliation

The EfficientNet, as well as other CNNs, performs identification on an image-based
manner, yielding probabilistic outputs. Given that each specimen is represented by up to four
images—dorsal, ventral, and lateral views of the skull, and a ventral view of the mandible—and
recognizing that each cranial and mandibular view contains varying quantities of diagnostically
relevant characters for species identification, thus yielding differential identification accuracies,
we developed a weighted approach to reconcile multiple image outputs into a consolidated
specimen identification.

We calculated genus-level identification accuracy for each view and derived weights
using the formula: w; = 1 — (AcCmax — ACC;) *1, Where w; represents the weight for each view,
AcCmax denotes the highest accuracy among the four views, Acc; is the accuracy for each
individual view, and n is a parameter used calibrate the weighting (set to 10 in this study). These
weights (0l, 02, ®3, ®4) are then used to combine the probability distributions of four different
views of the skulls. The final genus-level identification for each specimen is determined by
maximizing the weighted sum of these views' probability distributions. The process is expressed
mathematically as follows: Pigimiquar = argmax{Ps 4 * w; + Py, * Wy + Py % w3 + Py | *

wy}, Where P 4 , B, , Ps, , Py, represent the probability distribution matrices for the dorsal,

ventral, lateral skull, and lateral mandible views, respectively, and w;.4 are the corresponding
weights for each view as calculated earlier,. The sum of the probabilities in each matrix is
normalized to 1. The argmax function identifies the class with the highest combined probability,
which corresponds to the final predicted genus-level category for the specimen, denoted as

Pindividual .

2.3.6 A hierarchical identification networ k

Given that direct species-level identification resulted in an overall accuracy below 90% (see
Results Section), and considering that seven of the 18 talpid genera are polytypic (Euroscaptor,
Mogera, Talpa, Scapanus, Scaptonyx, and Uropsilus while Parascaptor was shown to contain
two cryptic species), we implemented a hierarchical classification scheme, employing a cascade
of classifiers to sequentially identify specimens to the genus and species level. This approach
utilized two primary classifiers: one trained to distinguish among all talpid genera, and a second
suite of species-level classifiers tailored to a specific polytypic genus. The genus classifier first
assigned each specimen's photographic set to the most probable genus. For specimens predicted
to belong to a polytypic genus, the photographic set was then passed to the corresponding
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species-level classifier. Individual image classifications were then reconciled to produce a single,
consolidated species prediction for each specimen. This strategy addresses the hierarchical nature
of taxonomic relationships and the varying levels of morphological differentiation between and
within genera. We named our network, Hierarchical Identification of Species NETwork (HIS-
NET).

To assess the consistency of the network performance and minimize the influence of data
partitioning on the result, we implemented a five-fold cross-validation approach. The dataset was
partitioned into five subsets of approximately equal size. In each iteration, four subsets were utilized
for network training, while the remaining subset served as the validation set.

To elucidate the decision-making process of our network, we employed the Class
Activation Mapping (CAM) algorithm to generate heatmaps, which were superimposed on the
original images. We then manually inspected these heatmaps to discern which part of the
skull/mandible the deep learning network prioritized and identified as crucial for species
identification.

3. Realts

3.1 Talpid phylogenetic hypotheses employing UCE data are robust and support the existence
of cryptic species

Both concatenation (RAXML; Fig. 1, Fig. S1) and coalescent (ASTRAL; Fig. S2)
analyses produced highly supported topologies that were broadly consistent with each other.
Briefly, both analyses recovered the subfamilies Uropsilinae and Talpinae, unite the three shrew
mole tribes into a monophyletic clade, and support a basal divergence of Scalopini within
Talpinae. Of note, Condylura was placed sister to shrew moles with high support in both analyses
(maximum likelihood bootstrap value [BS]=100, ASTRAL coalescent bootstrap value [c-
BS]=1.0). The only topological discrepancies between analyses pertain to shrew mole
interrelationships and the placement of a single lineage (Euroscaptor sp.2) within Talpini. Chief
among these is that the UCE concatenation analysis strongly supported Chinese shrew moles
(Scaptonyx) as sister to North American shrew moles (Neurotrichus), while the UCE coalescent
analysis placed Scaptonyx sister to the Japanese shrew moles (Urotrichus + Dymecodon) with
high support. Importantly, both analyses revealed the presence of distinctive genetic lineages in
Uropsilus, Euroscaptor and Parascaptor, confirming an underestimation of species diversity
within the Southwest China sky island complex. Given that the Uropsilus species continuum
comprises numerous undescribed species ™ *2 that were not sampled here, we will henceforth
focus our attention on cryptic species delimitation within Euroscaptor and Parascaptor.

3.2 Molecular speciesdelimitation supportsthe genetic distinctiveness of cryptic species

To test whether the genetically distinctive cryptic lineages identified in Euroscaptor and
Parascaptor form monophyletic clades according to the PSC, we extended our taxon sampling for
members of these genera and estimated mitochondrial phylogenies based on cytochrome B (CYTB)
gene sequences. The CYTB gene tree revealed that the Parascaptor sp.1 clade represents a basal
divergence of the genus (Fig. S3A) that is comprised of specimens from eastern Yunnan and
southern Sichuan (Fig. S4A). P. leucura is represented by one specimen from northeast India that
was placed sister to P. sp. 2 specimens from southwestern Sichuan, central and western Yunnan,
and northeastern Myanmar (Fig. S4A). Notably, both species delimitation analyses — Automatic
Barcode Gap Discovery (ABGD) and Assemble Species by Automatic Partitioning (ASAP) — and
our K2P genetic distance heatmaps further revealed distinctive subclusters among Parascaptor
sp.2 populations from Yunnan, Sichuan, and Myanmar (Fig. S3A). However, due to limited
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specimen sampling from most identified subclusters, we here conservatively treat Parascaptor
sp.2 as a single putative species.

The Euroscaptor sp.1 and E. sp.2 samples used in the UCE analyses are from museum
specimens collected in the 1960’s, with E. sp.1 originally identified as E. klossi, while the two
specimens of E. sp.2 were identified individually as E. micrura and E. grandis B However, the
CYTB gene trees of Euroscaptor support our finding that these specimens instead belong to cryptic
lineages that each form a well-supported monophyletic clade, a conclusion also evidenced by the
ABGD and ASAP analyses (Fig. S3B). Both lineages are moreover geographically separated from
other species in this genus, with E. sp.1 distributed between the Salween and Mekong rivers of
southwestern Yunnan, and E. sp.2 only being known from one locality to the west of the Salween
River in southwestern Yunnan (Fig. $4B).

Uropsilinae I— Uropsilus investigator

Urapsilus nivatus

Urapsilus sp.1 y g
Uropsilus soricipes

Uropsilus gracilis

Uropsilus atronates

- Scapanulus oweni
Parascalops breweri

Scalopus aquaticus

Scalopus aguaticus Sca|0pini ‘
Scapanus towensendii

Scapanus orarius

Scapanus latimanus

& Scaptonyx wangi TR

i Scaptonyx affinis ﬁca pt? nylfh I_m

Newrotrichus gibbsii eurotricnini

Dymecodon pilirostris L ._
Urotrichus talpoides Urotrichini

Condylura cristata Condw urini

Talpa europaea
Talpa caeca
Talpa romana
Creoscaptor mizura
Mogera latouchei
Mogera insularis
Mogera kanoana
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Mogera etigo
Mogera robusta ’
Mogera wogura :
Mogera wogura
Scaptochirus moschatus Talpini
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Parascapior sp.1
Euroscaptor subanura
Euroscaptor parvidens
Euroscaptor grandis
Euroscaptor longirostris
Euroscaptor orlovi
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Euroscaptor malayana
Euroscaptor sp.1
0.01subs./site I Desmana moschata F
b= Galemys pyrenaicus Desmanini

Talpinae

Figure 1. Phylogenetic relationships among talpid species. This maximum likelihood (RAXML)
tree was constructed using concatenated ultraconserved element (UCE) data. Unless specified, all
relationships are highly supported by both concatenation and coalescent analyses. Relationships
not strongly supported in concatenation (BS <0.95: $; Fig. S1) or coalescent analysis (c-BS <0.95:
#; Fig. S2) are indicated. Paintings of representative species by Umi Matsushita.

To further validate these putative species, we conducted multispecies coalescent analyses
using 11 nuclear genes, as implemented in Bayesian Phylogenetics and Phylogeography (BPP).
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Due to insufficient taxon sampling, however, Euroscaptor sp.2 was not included in the BPP
analysis. In line with the CYTB results, BPP employing various combinations of algorithms and
parameters consistently supported the genetic distinctiveness of Parascaptor sp.1 and P. sp.2, as
well as supporting Euroscaptor sp.1 as a well-defined species (Table S3).

Notably, our CYTB and species delimitation analyses also uncovered distinct subclades
within several recognized Euroscaptor species (e.g., E. orlovi, E. kuzentsovi) and revealed that E.
parvidens is paraphyletic. Accordingly, species diversity within this genus is almost certainly
larger than currently described.

3.3 Measurement- and outline-based morphometric analyses support subtle but consistent
differ ences between recognized and cryptic species

To complement the above molecular delimitation results, we examined the morphological
distinctiveness of Parascaptor sp.1, P. sp.2, and Euroscaptor sp.1 using a morphometric analysis
with 15 cranial measurements and a geometric morphometric analysis based on the outline shape
of the ventral view of the skull. For Parascaptor, principal component analysis (PCA) based on
both linear measurements and outline shapes failed to clearly separate P. leucura and the two
putative species (Fig. S5A, E), indicative of a high degree of morphological similarity. For
instance, in the measurement-based analysis, a plot of the first two principal component scores
(PC1 vs. PC2, respectively) shows that Parascaptor sp.2 is generally plotted more negatively on
the PC2 axis and more positively on the PC1 axis. Although this positioning allows for a marginal
separation from P. leucura and P. sp.1, plots of the latter two species overlap in the positive side
of PC2. PC2 accounts for 14.4% of the variation and is positively correlated with height of
coronoid process (HCP) (loading >0.89), and negatively correlated with lower molar row length
(LLM) (loading <-0.52) (Table S4A). This indicates that P. leucura and P. sp.1 are characterized
by longer postpalatal length, wider cranial breadth, but a shorter lower molar row, compared to P.
sp.2. On the other hand, canonical variate analysis (CVA) successfully differentiated all three
species with 100% accuracy, with all three species being well separated in the plots of the first two
canonical variates (Fig. S5C, G).

In the case of Euroscaptor, measurement-based PCA and CVA both showed that
Euroscaptor sp.1 plots closely with E. klossi, while the outline-based PCA revealed a close
association of E. sp.1, E. klossi, and E. micrura (cf. Figs. S5B, D with Fig. S5F). In the PCA plot
of the measurement-based analysis, E. sp.1 is plotted in the negative region of PC1 and the
positive region of PC2, suggesting an overall smaller skull (PC1 is positively correlated with all
measurements), a larger distance between the upper molars, and a broader foramen magnum
breadth (Table $4B). This distinctiveness is supported by the outline-based CVA analysis which
clearly differentiated Euroscaptor sp.1 from E. klossi, E. micrura and the two other closely related
species included in the analysis. In summary, while PCA support overall morphological
conservatism among Euroscaptor and Parascaptor species, the CVA analysis reveals subtle and
consistent differences that discriminate species and putative species, supporting the recognition of
these putative species as distinct taxonomic entities.

3.4 CNN networ k reach human-expert level accuracy in speciesidentification

As traditional cranial measurement methods may overlook morphological differences that
distinguish genetically distinct talpid lineages, our final aim was to evaluate the potential of deep
learning techniques for this purpose. Our final data set included 2998 cranial photos from 819
specimens (generally four different views — ventral skull, dorsal skull, lateral skull, and lateral
mandible — per specimen) representing 51 species/putative species across 18 genera (Table S5).
Prior to building a convolutional neural network (CNN) for species identification, we first
compared the identification accuracy of 19 different network models at the genus level using a
224x224 pixel image data set to identify the most suitable CNN architecture for this task. The
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networks were initially trained on a subset (~80%) of photos (data set Trn0-224; Table S6)
followed by testing on the remaining ~20% (data set Tst0-224), resulting in genus identification
accuracies ranging from 43.7-92.9% (Table S7). We then applied various photo manipulation
techniques (Fig. S12) to create an augmented 21,429 photo data set (Trn1-224) which was shown
to improve network identification accuracy by 3.2%-39.5%. As the EfficientNet series exhibited a
moderate computational efficiency yet was found to consistently achieve the highest identification
accuracy on both the non-augmented and augmented data sets, we thus further explored the impact
of image resolution on genus identification accuracy when using this model series. Identification
accuracy was found to progressively increase at higher image resolutions, with all EfficientNet
models achieving accuracies >96.5% at 380x380 pixels (Table S8). Accordingly, we selected the
EfficientNet-B3 model with a 380x380 pixel resolution for subsequent analyses based on its
superior accuracy (98.0%) and workable computational efficiency.

We next tested the effects of integrating different cranial views and a hierarchical
identification strategy for species identification accuracy. When we first attempted to match single
specimen images — either the lateral mandible view or the lateral, ventral, or dorsal views of the
skull — to one of the 51 species (one-step strategy), 27 species (52.9%) were always correctly
identified (Fig. S6), with overall species identification accuracy being 88.0% (Table 1).
Reconciling the results of up to four images per specimen increased the number of species (37 of
51 or 72.5%) always corrected identified (Fig. S7), though the average species identification
accuracy was largely unchanged (88.5%).
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Figure 2: The architecture of HISNET (Hierarchical Identification of Species NETwor k).
Digital photographs of multiple skull views (skull dorsal view, s_d; skull ventral view, s_v; skull
lateral view, s_I; mandible lateral view, m_I) were first processed for each specimen by CNN-
based classifiers (a) to obtain a probability matrix (P) per image. Image reconciliation (b) was then
performed to sequentially predict the genus (Stage 1) and species (Stage Il) of the specimens. The
lower left panel illustrates the image classifier's structure, comprising multiple convolutional,
pooling, and fully connected layers (see text for details). The lower right panel depicts the
reconciliation process, where the probability matrix (P) for each specimen's images is multiplied

with a view-specific weight vector (W) to produce the final identification through an argmax
operation.

When implementing a hierarchical identification strategy (Fig. 2), the average single image-
based identification accuracy at the genus level was 98.0% with 12 of 18 (66.7%) genera always
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correctly identified (Fig. S8), while the multi-photo specimen-based analysis always correctly
identified 14 genera (77.8%) with a mean accuracy of 97.0% (Fig. S9). At the species level, the
mean image-based and specimen-based identification accuracies were slightly lower at 90.4% and
91.5%, respectively (Table 1). We further evaluated the robustness of our network using a five-fold
cross-validation strategy (Table S9). This resulted in an image-based accuracy of 86.4% and a
specimen-based accuracy of 89.0%. In conclusion, the hierarchical approach enhanced the accuracy
by ~2-3% and reached close to 90% specimen-based accuracy, demonstrating that our CNN
network attained a human-expert level accuracy. We named our network HIS-NET (Hierarchical
Identification of Species Network).

It is worth stressing that the identification of small mammal specimens often presents
additional challenges due to the frequent occurrence of missing or broken skull and/or mandible
elements. These conditions not only complicate identification efforts but often necessitate the
exclusion of such specimens from both morphometric and geometric morphometric analyses. We
thus tested the accuracy of species identification across various combinations of image availability
and specimen integrity (Table S9). Our findings indicate that when four images per specimen
were available, or when three images included at least two complete views, the HIS-NET model
consistently achieved species identification accuracies > 88%. Conversely, when two out of three
views of the skull were broken, or when the total number of images was limited to one or two, the
identification accuracy dropped below 75% (Fig. S10). These results underscore the need for
careful consideration of specimen condition and the development of standardized imaging
protocols in the implementation of such technologies.
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Figure 3. Confusion matrix heatmap showing HIS-NET identification accuracy for
recognized and cryptic speciesin all polytypic talpid genera. The panels illustrate the accuracy
for (A) Uropsilus, (B) Talpa, (C) Scapanus, (D) Mogera, (E) Parascaptor, (F) Scaptonyx, and (G)
Euroscaptor. Numbers at the top of each cell denote the number of specimens assigned to each
species.

3.5 HISNET accurately identifies cryptic species and reveals novel diagnostic characters
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Our final goal was to examine whether the genetically identified cryptic species could be
distinguished correctly from their con-generic partner. The three cryptic species included in this
analysis (E. sp.1, P. sp.1, P. sp.2) were correctly identified with 100% accuracy (Fig. 3), which is
higher than the mean identification accuracy of recognized species within the seven studied
polytypic talpid genera (86.9%). This finding underscores the ability of HIS-NET to efficiently
distinguish cryptic species based solely on cranial photos.

To better understand the model's decision-making process, we examined Class Activation
Mapping (CAM) generated heatmaps to identify morphological features that HIS-NET deemed
most informative for species discrimination. Across all taxonomic groups and regardless of
whether the focus was on the skull or mandible, HIS-NET consistently prioritized dental regions,
particularly the premolars and molars (Fig. 4). For instance, the upper premolars P4 exhibited
notable variations across the three species/putative species of Parascaptor: in P. leucura, P4 is
characterized by a well-developed paracone with a crest extending posteriorly that connects with a
low metastyle, forming a near-triangular shape on buccal view. The P4 paracone of P. sp.1
extends from a crest that descends vertically without directly connecting to the metastyle cusp.
The P4 morphology of P. sp.2 is reminiscent of its P2, with a crest extending posteriorly from the
paracone but not directly connecting to the more posteriorly positioned metastyle, resulting in a
trapeziform shape of P4 when viewed buccally. However, the developmental progression of P4
follows a different order: P. sp.2 > P. leucura > P. sp.1, consistent with the topology of the CYTB
gene tree.

Secaplonyx affinis Mogera insularis Euroscaplorsp. 1 Parascaplor leucura  Parascaplor sp. 1 Parascaplor sp. 2

Figure 4. Example of class activation mapping (CAM) heatmaps obtained from
representative talpid species and putative species. For each species, the images in each column
from top to bottom represent the dorsal, lateral and ventral views of the skull and the lateral view
of the mandible, respectively. The relative importance of each skull region that the model uses for
species identification is denoted by color, with red and blue areas being of high and low
importance, respectively. The images show that the dental regions, as well as palatine, pterygoid,
and tympanic regions are important contributors for the model’s decision-making process.

For the skull, the model also focused on the maxillary region in both ventral and lateral
views, as well as the nasal and frontal areas in the dorsal view (Fig. 4). Additionally, HIS-NET
frequently highlighted the palatine, pterygoid, and tympanic regions, with occasional emphasis on
the parietal bone in some specimens. Most of these areas have long been known to be critical for
species identification in small mammals. In the case of the mandible, the model consistently
emphasized the ascending ramus, with particular attention to the area surrounding the condylar
process. The observation that HIS-NET consistently focused on known informative anatomical
regions emphasize the model's ability to detect specific features that are crucial for species
identification. However, our examination of CAM-highlighted areas in Euroscaptor revealed
additional intriguing features beyond differences in upper and lower dental morphology. Notably,
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CAM highlighted the basipharyngeal region as crucial for species identification of Euroscaptor
sp.1. The pterygoid hamuli, which form the walls of the basipharyngeal canal in this species,
extend laterally on the anterior half. This feature is distinctive among all examined Euroscaptor
species and has not previously been utilized as a diagnostic character in talpid taxonomy. These
findings emphasize the power of CAM in assisting the identification of novel, effective diagnostic
features that traditional morphometric and geometric morphometric approaches may overlook.

4. Discussion
4.1 New hypothesis of Talpidae evolution

Our phylogenetic analyses using UCEs corroborate and are largely congruent with
previously published topologies derived from Tree of Life genes © ", Briefly, all three studies fail
to support the monophyly of the two strictly fossorial tribes (Scalopini and Talpini) thereby
supporting the contention first suggested by Shinohara et al. 2 that this derived lifestyle evolved
twice independently in this family. Desmanini was also recovered as the sister group to a clade
containing shrew moles, star-nosed moles, and Eurasian fossorial talpids congruent with the
concatenation analysis of He et al. ™). Similarly, the UCE concatenation analysis placed Chinese
shrew moles (Scaptonyx) sister to North American shrew moles (Neurotrichus) in line with both
Tree of Life studies © % The only major discordance among these studies pertains to the
placement of Condylura, which has been notoriously difficult to resolve 2, Importantly, the
current analyses reveal a novel and well-supported sister relationship between the star-nosed mole
(C. crigata) and shrew moles. This finding conflicts with earlier studies that placed Condylura
sister to Desmanini ! or Talpini B \with moderate to low support. Accordingly, our robust
phylogenetic hypotheses provide a valuable framework for further investigation into the
systematics of talpids, encompassing both extant and extinct lineages. Importantly, the results
support the presence of multiple undescribed lineages within widespread recognized species or
species complexes, highlighting the rich species diversity in the sky islands of Southwest China.

4.2 Unraveling the under estimated species diver sity of talpid mole

Our comprehensive study, combining ultraconserved element (UCE) phylogenomics,
molecular species delimitation, traditional morphometrics, and cutting-edge CNN-based
analyses, reveals a previously underappreciated diversity within the genera Euroscaptor and
Parascaptor. Each cryptic lineage identified in the UCE phylogeny emerged as a monophyletic
clade and is supported by measurable and diagnosable morphological characters despite the
overall morphological conservatism within each genus. These cryptic species are moreover
confined to restricted mountain ranges (Fig. $S4) and conform to IBD/IBE diversification
principles. Collectively, these lines of evidence unambiguously support the recognition of these
cryptic lineages as full species, even under the stringent criteria of the dmPSC.

Our findings indicate that Parascaptor comprises at least three distinct species: P. leucura,
distributed across Nepal, northeastern India, and parts of western Myanmar; P. sp.2, inhabiting
central and western Yunnan, southwestern Sichuan, and eastern and central Myanmar; and P. sp.1,
found in central-eastern and northeastern Yunnan and adjacent southern Sichuan. Although
genetic data for P. leucura were not included in this study, unpublished data (pers. comm. Shi-
Ichiro Kawada) indicate that Parascaptor sp.l is sister to a clade comprising P. leucura and
Parascaptor sp.2. This phylogenetic relationship aligns with our morphological analyses, which
reveal that Parascaptor sp. 1 exhibits the most primitive dental (current study) and mandibular !
morphology of the three species.

In Euroscaptor, our analyses support the recognition of Euroscaptor sp.1 from Menglian.
Originally identified as E. klossi following their collection in 1964, these specimens instead form a
lineage distinct from other nearby distributed species (E. klossi, E. kuznetsovi, and E. orlovi) (Fig.
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$4). The status of Euroscaptor sp.2, represented by two samples (one with a broken skull and skin
and the other with only skin) from Yingjiang, remains less certain. While mitochondrial data
clearly differentiate it from E. grandis, we cannot rule out a potential affinity to E. micrura
without further phylogenetic analysis including this species.

The phylogeographic patterns observed in our newly identified talpid mole species provide
compelling evidence for the role of sky islands in driving allopatric diversification across
Southwestern China and adjacent mountain regions. Our findings reveal a clear I1BD and IBE
diversification pattern (Fig. $4), with species distributions confined to middle-to-high elevation
habitats within distinct mountain ranges that are separated by large valleys and drainage systems.
This pattern of distribution is consistent with observations in other animal groups inhabiting this
region *"21 underscoring the generality of these biogeographic processes.

Importantly, our study unveils a hierarchical clustering pattern that adds a layer of
complexity to the observed diversification. For instance, within Parascaptor sp.2, we identified
distinct lineages from central Myanmar and western Yunnan (west of the Salween River), with
each forming a separate clade/lineage (Fig. S3). This genetic structuring suggests ongoing
diversification processes. Similarly, our analysis of the CYTB gene tree revealed that Euroscaptor
parvidens comprises two non-monophyletic clades (Fig. S3), indicating an underestimation of
species diversity within this taxon in the mountains of central and southern Vietnam. The finding
of potentially distinct lineages in Euroscaptor orlovi and E. kuzentsovi additionally emphasize the
need for further investigation with increased sampling efforts to fully elucidate the extent of
cryptic diversity in southeast Asia.

4.3 Advantage of CNN in speciesidentification

While CNNs have revolutionized species identification in various taxa like plants and insects
8 their application in mammalian taxonomy, particularly for small mammals, has remained largely
untapped. This is largely due to a lack of comprehensive skull and dental image databases for any group
of mammals due to the high cost and time investment required for data collection. Species sample sizes
of available museum specimens are also uneven, which is especially true for rare and recently
recognized species. Finally, training CNNs to recognize minute interspecific differences in skull and
dental features is a formidable task. To overcome these challenges, we first constructed global-scale
image database encompassing nearly all genera and a majority of species within the talpid family. We
also adopted an augmentation strategy which helped to balance the different sample sizes between
genera and species. The high levels of species identification accuracy demonstrate the potential of CNNs
for distinguishing (and discovering) nuanced morphological differences and highlights the potential
applicability of deep learning networks using cranial images to other groups of mammals.

Our HIS-NET, employing a hierarchical approach with sequential genus and species-level
classifications, achieved an impressive overall accuracy exceeding 98% at the genus level and 91% at
the species level, which represents an improvement of 2-3% over the one-step identification strategy.
Direct species identification within our dataset would require processing an average of 6.0 bits of
Shannon information entropy per identification, whereas our hierarchical approach reduced this to 4.2
bits for genus-level and 2.8 bits for species-level classifications. This suggests that by breaking down the
identification task, the network requires less information at each stage, making species decision more
efficient. Moreover, hierarchical classification aligns with traditional taxonomic practice, where genus-
level distinctions are often more conspicuous than subtle interspecific differences. By first establishing a
strong genus-level classification, HIS-NET likely benefits from a reduced search space and can focus on
finer-scale morphological distinctions for species-level identification. Future research could explore
adding subfamily and tribe hierarchical layers to potentially enhance computational efficiency and
identification accuracy even further.

The robustness of HIS-NET in identifying species from specimens with damaged or missing
features that are typically not included in traditional and geometric morphometric analyses is

[46-
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particularly noteworthy. This capability, enhanced by our data augmentation strategy simulating
cranial damage (e.g., drop out and coarse drop out), addresses a common challenge in taxonomic
studies of small mammals where specimens are often incomplete. However, specimens with fewer
images combined with a higher percentage of broken skulls/mandibles were more prone to
misidentification (Fig. S10).

One of the most exciting aspects of our CNN approach is its ability to reveal previously
overlooked morphological characters. For instance, the network found that the structure of the
basipharyngeal canal in Euroscaptor species is highly effective in distinguishing between species of
this genus (Fig S11). Analysis of this structure has been employed for other groups of mammals (o]
though has previously been overlooked in Talpidae taxonomy. This discovery thus underscores
the potential of CNNs in guiding taxonomists towards a novel and valuable repertoire of
distinguishable morphological characters for species delimitation, which in turn could accelerate
our ability to discern cryptic species more efficiently.

Our results also illuminate several avenues for future research and methodological
improvements. First, because we show that incorporating different views of the skull improves
identification accuracy, expanding the image database to include more views, such as the occlusal
surfaces of mandibles, and/or taking multiple photos from different angles of the same view could
further improve accuracy ™" . Indeed, the occlusal view includes dental morphology that is
crucial for identification of extant and fossil species. Second, while our CNN achieved expert-
level accuracy, the CAM revealed that the network tends to focus on specific regions of each
image. This selective attention, while effective, suggests that our model has not yet fully captured
the complexity of morphological variation present in the skulls and teeth of talpid moles. Thus,
incorporating advanced machine learning techniques such as attention mechanisms ' or object
detection algorithms %, coupled with specific guidance such as labeling individual teeth and
auditory bullae, could further enhance the model's accuracy. Third, an intriguing finding of our
study was the unexpectedly high accuracy rates achieved from the dorsal skull view, which were
comparable to those obtained from ventral and lateral views (Table 1). This observation
challenges the notion that dorsal skull features are less informative for species identification in
vertebrates. It further suggests that there may be previously unrecognized or underappreciated
morphological characters in the dorsal skull region that are taxonomically significant.

In conclusion, our CNN-based approach represents a technological advancement in
mammalian taxonomy, offering a powerful tool for bridging the gap between molecular species
delimitation and traditional morphological examination. It also highlights the potential for further
refinement and expansion of these methods. The integration of deep learning with traditional
taxonomic methods promises to revolutionize our ability to discern and discover species,
particularly in groups with subtle morphological differences.
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Figure captions:

Figure 1. Phylogenetic relationships among talpid species. This maximum likelihood (RAXML)
tree was constructed using concatenated ultraconserved element (UCE) data. Unless specified, all
relationships are highly supported by both concatenation and coalescent analyses. Relationships
not strongly supported in concatenation (BS <0.95: $; Fig. S1) or coalescent analysis (c-BS <0.95:
#; Fig. S2) are indicated. Paintings of representative species by Umi Matsushita.

Figure 2: The architecture of HISNET (Hierarchical Identification of Species NETwork).
Digital photographs of multiple skull views (skull dorsal view, s_d; skull ventral view, s_v; skull
lateral view, s_I; mandible lateral view, m_I) were first processed for each specimen by CNN-
based classifiers (a) to obtain a probability matrix (P) per image. Image reconciliation (b) was then
performed to sequentially predict the genus (Stage 1) and species (Stage I1) of the specimens. The
lower left panel illustrates the image classifier's structure, comprising multiple convolutional,
pooling, and fully connected layers (see text for details). The lower right panel depicts the
reconciliation process, where the probability matrix (P) for each specimen's images is multiplied
with a view-specific weight vector (W) to produce the final identification through an argmax
operation.
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Figure 3. Confusion matrix heatmap showing HIS-NET identification accuracy for
recognized and cryptic speciesin all polytypic talpid genera. The panels illustrate the accuracy
for (A) Uropsilus, (B) Talpa, (C) Scapanus, (D) Mogera, (E) Parascaptor, (F) Scaptonyx, and (G)
Euroscaptor. Numbers at the top of each cell denote the number of specimens assigned to each
species.

Figure 4. Example of class activation mapping (CAM) heatmaps obtained from
representative talpid species and putative species. For each species, the images in each column
from top to bottom represent the dorsal, lateral and ventral views of the skull and the lateral view
of the mandible, respectively. The relative importance of each skull region that the model uses for
species identification is denoted by color, with red and blue areas being of high and low
importance, respectively. The images show that the dental regions, as well as palatine, pterygoid,
and tympanic regions are important contributors for the model’s decision-making process.

Tablel. A summary of speciesidentification (Acc) percentages (%) in different analyses
based on the images of lateral (gcyi-), ventral (skui-v), and dorsal (skun-n) views of the skull
and the lateral mandible view (mandibleL)-

ACCSkuII-D Acc Skull-L ACCMandibIe-L ACCAverage ACCSpecimen
(6) Ay O8) T (op) (%) (%) (%)
One-step: species 89.9 88.4 91.1 83.3 88.0 88.5
HIS-NET: genus 99.3 98.0 99.3 95.7 98.0 97.0
HIS-NET: all species 93.5 91.2 89.7 87.7 90.4 91.5
HIS-NET: recognized
species in polytypic genus 88.5 84.9 83.3 83.3 84.9 86.9
HIS-NET: cryptic species 100.0 100.0 88.9 100.0 97.1 100.0
HIS-NET: 5-fold cross- 87.9 87.5 86.0 84.4 86.4 89.0

validation

Supplementary materials

Supplementary figures
Figure Sl1. Phylogenetic tree of Eulipotyphla (Talpidae, Soricidae, Erinaceidae and

Solenodontidae) based on a concatenated alignment of ultraconserved elements. Branch lengths
represent substitutions per site. Unless specified, all relationships are highly supported (bootstrap
value =1.0).

Figure S2. Phylogenetic tree of Eulipotyphla (Talpidae, Soricidae, Erinaceidae and
Solenodontidae) based on a coalescent analysis of ultraconserved elements. Branch lengths
represent coalescent units. Unless specified, all relationships are highly supported (bootstrap
value =1.0). Dashes indicate weakly supported relationships (bootstrap value < 0.5), while the
hashtag indicates a relationship different from that estimated in the concatenation analysis.
Figure S3. A heatmap showing the Kimura 2-parameter distance (K2P) of the CYTB gene among
species and samples in (A) Parascaptor and (B) Euroscaptor. CYTB gene trees for each genus are
shown to the left and top of each heatmap. Vertical black bars represent species delimitation
results from the Automatic Barcode Gap Discovery (ABGD) and Assemble Species by Automatic

Partitioning (ASAP) analyses. The vertical blue bars to the right indicate taxonomic affiliations.
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Displayed ultrametric trees are maximum likelihood gene trees estimated using complete CYTB
sequences, as implemented in RAXML (see text for details). Results demonstrate that specimens in
Parascaptor sp.1 and P. sp.2 each form reciprocally monophyletic clades, while specimens in
Euroscaptor sp.1 and E. sp.2 also form distinct clades. Note that E. parvidens is shown to
comprise two non-monophyletic clades in all three analyses.

Figure $4. Distribution map of recognized and putative species in (A) Parascaptor and (B) Euroscaptor
(B).

Figure S5. Results of principle component analysis (PCA) and canonical variate analysis (CVA) based
on measurement-based morphometric and outline-based geometric morphometric analyses. A-D: PCA
plots showing scores on PC1 and PC2 derived from 15 log;e-transformed craniomandibular
variables for (A) Parascaptor and (B) Euroscaptor, and corresponding CVA plots displaying
scores on CV1 and CV2 for the same data in (C) Parascaptor and (D) Euroscaptor. E-H: PCA
plots illustrating scores on PC1 and PC2 based on skull outline shapes for (E) Parascaptor and (F)
Euroscaptor, and corresponding CVA plots showing scores on CV1 and CV2 for the same data in
(G) Parascaptor and (H) Euroscaptor.

Figure S6. Confusion matrix heatmap showing the image-based identification accuracy for
recognized and cryptic species across all species and putative species using a one-step strategy.
Each photo was directly identified to one of the 51 species. The Y-axis (true_label) represents the
actual species classification of each species, while the X-axis (predicted_label) represents the
species classification result predicted by the model. Numbers at the top of each cell denote the
number of specimens assigned to each species, while the percentage of specimens assigned to that
species is listed at the bottom of the cell. The overall accuracy of the model, based on the correct
identification of individual photos, was 88.0% (see Table 1).

Figure S7. Confusion matrix heatmap showing the individual-based identification accuracy for
recognized and cryptic species across all species and putative species using a one-step strategy.
Each specimen was directly identified to one of the 51 species. The Y-axis (true_label) represents
the actual species classification, while the X-axis (predicted_label) represents the species
classification result predicted by the model. Numbers at the top of each cell denote the number of
specimens assigned to each species, while the percentage of specimens assigned to that species is
listed at the bottom of the cell. The overall accuracy of the model, based on the correct
identification of individual specimen, was 88.5% (see Table 1).

Figure S8. Confusion matrix heat map showing the image-based identification accuracy for all
genera using HIS-NET. The Y-axis (true_label) represents the actual species classification, while
the Y-axis (predicted_label) represents the species classification result predicted by the model.
Numbers at the top of each cell denote the number of specimens assigned to each species, while
the percentage of specimens assigned to that species is listed at the bottom of the cell. The overall
accuracy of the model, based on the correct identification of individual images, was 98.0% (see
Table 1).
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Figure S9. Confusion matrix heatmap showing the specimen-based identification accuracy for all
genera using HIS-NET. The Y-axis (true_label) represents the actual species classification, while
the X-axis (predicted_label) represents the species classification result predicted by the model.
Numbers at the top of each cell denote the number of specimens assigned to each species, while
the percentage of specimens assigned to that species is listed at the bottom of the cell. The overall
accuracy of the model, based on the correct identification of individual specimens, was 97.0% (see
Table 1).

Figure S10. Summary of species identification accuracy obtained following five iterations of
cross-validation with HIS-NET. Each bar corresponds to a specific category, with values below
each bar indicating the number of available images per specimen, and those in parentheses
representing the number of images for each specimen showing a broken skull or mandible
element. The height of each bar reflects the total number of specimens per category, with the
green and orange segments corresponding to the number of correctly and incorrectly identified
specimens, respectively. Numbers above each bar indicate the total number of specimens
examined per category with the overall percent species identification accuracy for each category
given in parentheses.

Figure. S11. The lateral skull view of (A-C) three Parascaptor species/putative species and (D-F)
the ventral skull view of three Euroscaptor species/putative species.

Figure S12. lllustration of the various augmentation strategies used in this study. The original
image (top left) was subjected to different augmentation techniques to introduce minor distortions
and mitigate overfitting during neural network training. The augmentation methods included noise
injection (SaltAndPepper, AdditiveGaussianNoise, ImpulseNoise), blurring (GaussianBlur,
AverageBlur, MotionBlur), rotation (Rot90, Affine (rotate 45 degrees)), mirroring (Flipud
(vertical flip), Fliplr (horizontal flip)), masking (CoarseDropout, Dropout), and contrast

adjustment (SigmoidContrast, GammaContrast and AveragePooling).

Supplementary tables

Table S1. Taxonomy of Talpidae used in this study.

Table S2. Information regarding specimens used for UCE sequencing, Tree of Life (TOL) gene
sequencing, and CYTB gene sequencing, as well as accession numbers of sequences downloaded
from GenBank for species delimitation analyses.

Table S3: Summarized results of Bayesian Phylogenetics and Phylogeography (BPP) analyses for
the genera (A) Parascaptor and (B) Euroscaptor using 11 nuclear genes.

Table $4. Results of PCA conducted based on fifteen craniomandibular variables for (A)
Parascaptor and (B) Euroscaptor. Factor loadings, eigenvalues and percentage of variance
explained for each principal component (PC) are shown.

Table S5. Summary of the number of specimens and photos used in the CNN-based analyses. A
total of 51 species/putative species were included, following the taxonomy presented in Table S1.

The images were divided into training and testing datasets with an approximate ratio of 4:1. Data
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augmentation was applied to the training dataset, with up to 30-fold augmentation for each image.
Table S6. Prepared datasets used in CNN image-based analyses. Images from the original data
(Origin) were cropped (Origin-C) and padded to a square shape (Origin-CP). These images were
then split into training and testing datasets with an approximate ratio of 4:1. The images were
downsized for model selection (resolution 224 x 224) and resolution selection (224 x 224, 260 x
260, 300 x 300, and 380 x 380).

Table S7. Summary of parameters used in each model. The identification accuracy for each
model using image data with and without augmentation is given (see text for details).
Improvement is defined as the accuracy obtained using data with augmentation minus the
accuracy without augmentation. The number of parameters (Params) and floating-point operations
per second (FLOPs) for each model are also provided. Stochastic Gradient Descent (SGD) was
used as Optimizer.

Table S8. Performance comparison (%) of the EfficientNet model series (B0, B2, B3 and B3)
across various image input resolutions. The number of floating-point operations per second
(FLOPs) required for each model are also provided.

Table S9. Summary of the results of the five-fold cross-validation of HIS-NET on a specimen
identification basis. The table includes the number of specimens, the number of incomplete
specimens (represented by fewer than 4 images), and the number of images used in the training
and testing datasets, along with species identification accuracy (%). Additionally, it provides a
summary of correctly (Corr.) and incorrectly (Incorr.) classified images for various scenarios
based on the number of images and the extent of broken skulls/mandibles.

Table S10. Concatenation species tree estimated using (1) RAXML and (2) coalescent species tree
estimated using ASTRAL-III. Branch length represents substitutions per site (concatenation) and

coalescent units (coalescent).

Appendix:
Appendix . Specimens used in image-based CNN analyses and measurement-based
morphometric analyses

Data availability:
The data for genetic analyses was uploaded to Mendeley Data, V1, (doi: 10.17632/h32txw2xh9.1).
The code of HIS-NET is available through https://github.com/Hua-jiu/HISNET
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