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Abstract 
The sky islands of Southwest China, characterized by dramatic topographical and climatic 
variations, are prominent hotspots of biodiversity and endemism. Organisms inhabiting middle-to-
high elevation habitats in this region are geographically isolated within distinct mountain chains, 
which over geological time have been subjected to isolation-by-distance and isolation-by-
environment. These processes have led to profound allopatric diversification and strong 
phylogeographic structuring, resulting in a plethora of genetically distinct cryptic species, as is 
becoming increasingly evident for many small mammal families. However, morphological 
conservatism can pose significant challenges in delineating these clades within species complexes. 
In this study, we leverage artificial intelligence technologies to unravel the hidden species 
diversity of moles (family Talpidae) in Southwest China's sky islands. We first employed 
ultraconserved elements (UCEs) to investigate the evolutionary history of talpid moles, conducted 
molecular species delimitation using mitochondrial and multi-locus genes, and utilized both 
traditional and geometric morphometrics to examine their morphological disparity. To address the 
challenges of morphology based cryptic species identification, we developed a deep learning 
Hierarchical Identification of Species NETwork (HIS-NET) to create an image-based model that 
analyzes four different views of the skull/mandible to distinguish genera and species 
hierarchically. HIS-NET not only achieved expert-level accuracy in species identification but also 
effectively distinguished between cryptic and known species, aiding in the identification of key 
morphological variation intervals. Our results support the recognition of allopatrically distributed 
taxa in Euroscaptor and Parascaptor as full species, thereby confirming that species diversity in 
this region remains underestimated. Beyond advancing our understanding of speciation in this 
unique and fragile ecosystem, our study serves as a proof-of-concept, demonstrating the power of 
deep learning in unraveling hidden biodiversity within this and other species complexes. 
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1 Introduction 
The mountainous regions of Southwest China, situated adjacent to and east of the Qinghai-

Tibet Plateau, are characterized by a complex geomorphological history that produced dramatic 
topographical landscapes ranging from 300 m to >7,000 m above sea level [1]. Shaped by the uplift 
of the Qinghai-Tibet Plateau, this region comprises a series of mountain chains that are physically 
isolated from one another by basins, valleys and extensive drainage systems that predominantly 
run in north-south directions [2]. This uneven terrain supports varied climates across both vertical 
and horizontal space, providing a mosaic of ecologically diverse habitats [3]. Another distinctive 
feature of this region is the discontinuous distribution of similar habitats at medium to high 
elevations across different mountain areas, creating a unique geographical backdrop that has 
earned it the "Southwest China sky-island complex" designation [4]. 

The concept of sky islands, originally coined to describe isolated mountain ranges in the 
southwestern United States and northern Mexico [5, 6], applies particularly well to these 
mountainous regions of Southwest China. Indeed, the progressive uplift of this region through 
geological time created an archipelago-like array of high-elevation “island” ecosystems separated 
by intervening lowlands that led to the fragmentation of plant and animal populations inhabiting 
middle-to-high elevation environments across the mountain ranges [7]. As such, this geographic 
panorama, in conjunction with climatic fluctuations such as the Pleistocene glaciations, has 
significantly influenced evolutionary processes and speciation events, resulting in a complex 
tapestry of endemic and relict species across these sky islands [8, 9]. 
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The Southwest China sky island complex has spawned globally important biodiversity 
hotspots [10] that harbor an exceptionally high level of species diversity. For example, this region is 
home to over 12,000 described species of vascular plants, of which 29% are endemic [11], and 
hosts approximately 50% of China's bird and mammal species [12]. However, the full extent of 
biodiversity in this region remains underexplored, largely due to the presence of cryptic species [13] 
– morphologically similar but genetically distinct lineages – which pose a significant challenge to 
biodiversity assessments and conservation efforts [14, 15].  

The primary mechanisms driving diversification and speciation in sky island complexes are 
isolation-by-distance (IBD) and isolation-by-environment (IBE), describing isolation driven by 
geographic distance or as a product of environmental dissimilarity, respectively [16]. Both 
processes may eventually result in allopatric speciation as populations of organisms in the newly 
isolated habitats can diverge into distinct genetic lineages across the chain of sky-islands. This 
evolutionary pattern is evident in many plants, insects, amphibians, and small mammals inhabiting 
the mountainous region of southwestern China [17-21]. Accordingly, previously recognized species 
with broad distributions are now classified into a complex of multiple species that exhibit patterns 
of allopatric speciation across different mountain islands [22]. For instance, the rodent genus 
Typhlomys, originally thought to comprise a single species widely distributed throughout southern 
China, has been found to comprise at least seven distinct species and undescribed cryptic lineages 
[23, 24]. All of these newly recognized species show some degree of geographical isolation, with 
each genetic lineage confined to a specific mountainous area. These findings imply that other 
widely distributed small mammal families inhabiting this region may also house undescribed 
species, thereby hampering our ability to fully assess the species diversity in the Southwest China 
sky island complex. The mole family Talpidae serves as a prime example, as cryptic diversity is 
likely widespread in this region but remains largely unresolved [8, 14, 15]. 

Classified within the order Eulipotyphla, talpids are widely distributed across Europe, Asia, 
and North America and are characterized by a range of ecological and morphological 
specializations. These include the shrew-like moles of the monogeneric (Uropsilus) subfamily 
Uropsilinae which possess echolocation abilities [25], a unique trait in the family, though are 
primarily terrestrial in their ecological niche. The remaining clades belong to the subfamily 
Talpinae and have evolved to exploit a diverse variety of habitats: the semi-fossorial shrew moles 
(tribes Scaptonychini, Urotrichini, and Neurotrichini), the semi-aquatic desmans (Desmanini), and 
the fully fossorial (Talpini and Scalopini) and semi-aquatic/semi-fossorial (Condylurini) moles.  

As of 2018, Wilson and Mittermeier [26] recognized 54 extant talpid species within 18 genera 
globally (Table S1) though other recent studies have revealed additional new [27-32] and cryptic 
species [8, 14, 15, 33-35] and even a new genus (Alpiscaptulus)[36]. The mountains of Southwest China, 
which harbor 17 currently recognized species, are not only a hotspot of this family’s species 
diversity but are also home to the highest number of cryptic species, particularly within Uropsilus 
[14, 33], Euroscaptor [37], Parascaptor [8, 34, 35], and Scaptonyx [8, 15]. While a number of distinct 
talpid lineages identified in these studies have since been recognized as full species – e.g., 
Uropsilus nivatus, U. atronates [26], Euroscaptor orlovi, E. kuznetsovi [38], Scaptonyx wangi and S. 
affinis [27] – others are yet to be investigated. Importantly, species in these genera are middle-to-
high elevation inhabitants that exhibit clear sky-island distribution patterns [14, 15]. This 
discontinuous distribution results in diversification following basic IBD or IBE principles, that has 
led to strong genetic structuring across the region. However, the similar habitats found among the 
many montane islands have also fostered morphological conservatism [39], resulting in many of 
these same genetically distinct lineages having a high degree of similarity in external and 
craniodental features. Thus, while molecular-only based approaches have detected cryptic species 
following the phylogenetic species concept (PSC), they often leave open the question of whether 
these genetic lineages are morphologically diagnosable. This challenge is particularly pertinent 
when considering either the diagnostic morphological phylogenetic species concept (dmPSC [40]) 
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or the unified species concept (USC [41]), which both require diagnosable morphological 
differences among putative species, thereby underscoring the need for tools that can bridge the gap 
between molecular structuring and full species validation. 

In recent years, deep learning has revolutionized classification and identification across 
various fields [42]. Convolutional neural networks (CNNs), in particular, have demonstrated 
remarkable efficacy in image classification tasks, even without additional contextual information 
[43, 44]. The power of CNNs lies in their ability to automatically learn hierarchical feature 
representations from raw image data [45], making them particularly well-suited for tackling 
complex pattern recognition problems in biology, including species identification. Indeed, CNNs 
have been successfully applied to the identification of plant [46] and animal species [47], 
demonstrating their efficacy and broad potential in species identification. However, despite their 
successful use in invertebrates [48], the application of CNNs in the identification of vertebrate 
species remains surprisingly limited. Only a few studies have explored the potential use of CNNs 
for the identification of mammal and reptile species, and these studies typically included only a 
small number of closely related or congeneric species [49, 50]. Accordingly, there is a conspicuous 
lack of comprehensive, family-level studies that explore the capacity of CNNs to discern 
morphological differences at both species and higher taxonomic levels. 

The classification system in taxonomy is inherently hierarchical, progressing from species to 
genus to family levels and beyond. Taxonomists recognize that morphological differences at 
various taxonomic levels, such as between genera and between congeneric species, are distinctly 
different. Hierarchical classification using deep learning for multi-label image categorization is a 
well-established approach in the information science domain, and can significantly enhance 
information retrieval efficiency and accuracy [51]. However, the application of hierarchical 
classification strategies to species identification has been surprisingly limited with only a few 
studies having explored this approach in the context of biological taxonomy [52, 53]. Additionally, 
most previous studies have predominantly relied on either single or multiple photographs of the 
same view, potentially missing crucial diagnostic features that are only evident from different 
angles or on structures obstructed from view. To our knowledge, few studies have examined 
whether integrating multiple views of specimens capture more key diagnostic characters and 
improve identification accuracy [54]. 

To address these limitations and explore the full potential of CNNs in vertebrate taxonomy, 
we conducted an integrative evolutionary history study on the Talpidae family with a focus on 
exploring the cryptic species diversity in the Southwest China sky island complex. We first 
generated an ultraconserved element (UCE) dataset to investigate the molecular phylogenetics of 
talpids and applied species delimitation methods employing mitochondrial and nuclear genes to 
confirm any genetically distinct lineages observed (Table S2). We then applied both traditional 
and geometric morphometrics to test whether the identified cryptic species are also phenotypically 
distinct from congenerical recognized species. Our final aim was to evaluate the potential of deep 
learning techniques to uncover morphological differences that may be imperceptible to traditional 
methods to accurately distinguish previously recognized from cryptic talpid species. To this end, 
we developed a novel Hierarchical Identification of Species NETwork (HIS-NET) model using 
CNN, which integrates multiple views of the skull and mandible of voucher specimens for species 
identification. This research not only advances our understanding of talpid diversity in the 
Southwest China sky island complex but also provides a proof-of-principle for the application of 
deep learning in resolving complex taxonomic challenges. 

 
Material and Methods 
  
2.1 Molecular phylogeny and species delimitation 
2.1.1 Taxonomy and taxon sampling  
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We followed the taxonomy proposed by Wilson and Mittermeier [26] but included updates 
in subsequent studies thereafter, expanding the Talpidae family to 66 species within 19 genera 
(Table S1). We propose several candidate species within Euroscaptor (n=2), Parascaptor (n=2), 
and Uropsilus (n=1) in southwestern China, based on their genetic and, where applicable, 
morphological distinctiveness. We collected a total of 61 specimens representing 60 
species/candidate species for high-throughput sequencing (Table S2), that included 44 talpid 
species, 11 shrews (Soricidae), 5 erinaceids (Erinaceidae), and 1 solenodon (Solenodontidae). 
Tissue samples preserved in 95% ethanol were obtained from various sources, including loans 
from the following institutions: Kunming Institute of Zoology (KIZ, China), National Museum of 
Nature and Science (NMNS, Japan), National Museum of Natural History (USNM, USA), Burke 
Museum of Natural History and Culture (NWBM, USA), Field Museum of Natural History 
(FMNH, USA), New Mexico Museum of Natural History (NMMNH, USA), as well as several 
personal collections (Table S2). To test the validity of cryptic species, we also collected 
specimens from southern China and Myanmar. 
 
2.1.2 DNA Library preparation  

Total genomic DNA was extracted from tissue samples using a Qiagen DNeasy Blood 
and Tissue Kit (Qiagen). The extracted DNA was randomly fragmented to sizes ranging from 200 
to 400 bp using the NEBNext dsDNA Fragmentase (New England Biolabs, Canada). Library 
construction was performed using the NEBNext Fast DNA Fragmentation & Library Prep Set for 
Ion Torrent (New England Biolabs, Canada), with each library incorporating a unique barcode 
adapter from the NEXTflex DNA Barcodes for Ion Torrent (BIOO Scientific, USA). We 
conducted size selection using a 2% E-gel on an E-Gel Electrophoresis System (Invitrogen, 
Canada). We re-amplified the libraries using a NEBNext High-Fidelity 2X PCR Master Mix (New 
England Biolabs, Canada), and purified using Dynabeads Magnetic Beads. Following library 
construction, we determined the concentrations using a Qubit 4 fluorometer and Qubit dsDNA 
Assay (Thermo Fisher Scientific, Canada). 

 
2.1.3 UCE capture and sequencing  

For ultra-conserved elements (UCE) capture, we utilized myBaits probes synthesized by 
Arbor Biosciences (Ann Arbor, MI, USA). Four DNA libraries of similar quantity were pooled 
prior to hybridization. In-solution hybridization was performed following the myBaits 
manufacturer's protocol. The enriched libraries were purified using Dynabeads Magnetic Beads 
and amplified with a NEBNext High-Fidelity 2X PCR Master Mix (New England Biolabs, 
Canada). The indexed captured libraries were pooled in equal concentrations and sequenced on an 
Ion Torrent PGM or Ion Torrent Proton sequencer.  
 
2.1.4 Data processing and phylogenetic analysis  

Raw data were automatically de-multiplexed and converted to FASTQ format on the 
Torrent Suite v4.0.2 software (Thermo Fisher Scientific, Canada). Given that Ion Torrent 
platforms produce single-end (rather than pair-end) reads, we pre-processed the data using 
packages optimized for single-end reads following He et al. [37]. Initially, we trimmed adapters and 
barcodes using AlienTrimmer v0.4 [55] as part of the ClinQC v.1 package with conservative 
parameters (-k 15 -m 5 -l 15) [56]. We then removed poor quality data, using the DynamicTrim 
function of SolexaQA + +v3.1 [57], and eliminated duplicates using ParDRe [58]. Sequence 
correction was performed using karect [59] and the data were used for downstream assembly.  

For the UCE assembly, we followed the PHYLUCE v1.7 [60] protocol "UCE 
Phylogenomics" to extract UCE loci. Data were de novo assembled using SPAdes v3.1 [61]. The 
original “uce-5k-probes” were used as references to extract UCE loci from the draft assembled 
contigs. Additionally, UCE loci were extracted from publicly available (GenBank) genomes 
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of Condylura cristata, Sorex araneus, Erinaceus europaeus, and Solenodon paradoxus, following 
the PHYLUCE tutorial "Harvesting UCE loci from genomes". Loci present in at least 50% of taxa 
were retained for further analyses. Each locus was trimmed using ClipKIT with the “kpic-smart-
gap” parameter to retain parsimony-informative sites with few gaps [62]. Loci were then realigned 
using CIAlign to remove divergent sequences, insertions, and sequences shorter than 100 bp [63]. 
After data processing, 2989 UCE loci were retained, with an average of 2049 UCE loci per 
sample.  

 
2.1.5 Phylogenetic analyses  

We conducted both concatenation and summary-coalescent species tree analyses using a 
two-step strategy. First, we estimated gene trees for each UCE locus using RAxML-NG with the 
following parameters: --brlen scaled --bs-trees autoMRE(1000) --bs-metric fbp,tbe [64]. This 
included simultaneous rapid bootstrap analyses and searches for the best scoring maximum 
likelihood tree (--all). Subsequently, we employed TreeShrink [65] to remove taxa represented by 
very long branches from the corresponding UCE locus alignments. The pruned alignments were 
then used for tree estimations. 

For concatenated species tree estimation, we divided each UCE into three data blocks 
(core, left flanking, and right flanking regions) using SWSC-EN [66]. We determined the best 
partitioning scheme using PartitionFinder 2 [67] with the rclusterf search under the GTR+G model 
based on AICc. The optimal scheme included 1032 partitions. The concatenated tree was then 
estimated using RAxML-NG as described above. 

For coalescent species tree estimation, gene trees for each UCE locus were estimated with 
RAxML-NG. Branches with bootstrap supports lower than 10 were collapsed using nw_ed [68]. 
The species tree was then estimated using ASTRAL-IV v1.19 [69]. 
 
2.1.6 Molecular species delimitation  

To extend our taxon sampling, we included sequence data from newly collected specimens 
captured in Yunnan, Sichuan, and Myanmar representing Parascaptor sp.1, P. sp.2 and 
Euroscaptor sp.1 in our species delimitation analyses (Table S2). For each specimen, we 
amplified the complete mitochondrial CYTB gene and also amplified 11 nuclear genes (ADORA3, 
APP, ATP7A, BCHE, BDNF, BMI1, BRCA1, CREM, PLCB4, RAG1 and RAG2) for a subset of 
samples using the primers presented in [8, 70]. We were not able to collect additional Euroscaptor 
sp. 2 specimens for this analysis.  

We also retrieved available CYTB sequences for Euroscaptor (n=86) and Parascaptor 
(n=10) from GenBank and combined them with our newly generated sequences for phylogenetic 
analysis (Table S2). We first aligned the sequences using MUSCLE [71], and estimated the gene 
trees using RAxML as described above. We then employed two single-locus species delimitation 
methods: Automatic Barcode Gap Discovery (ABGD; [72]) and Assemble Species by Automatic 
Partitioning (ASAP; [73]). Additionally, we calculated pairwise K2P distances and generated a 
genetic distance heatmap in R v4.4 using the packages ape [74] and ggplot2 [75]. The Parascaptor 
and Euroscaptor datasets were analyzed separately. 

Finally, we performed coalescent-based species delimitation analyses using 11 nuclear 
genes, as implemented in BPP v4.7 [76]. Sample sizes for Parascaptor sp.1 and Parascaptor sp.2 
were 4 and 16, respectively. The Euroscaptor analysis included 22 specimens: E. malayana (n=2), 
E. klossi (n=1), E. kuznetsovi (n=8), E. orlovi (n=1), E. longirostris (n=4), and Euroscaptor sp.1 
(n=6). We did not include Euroscaptor sp.2 because we had only two samples in both the 
morphological and molecular data sets thereby precluding a robust examination of its taxonomic 
status in this study. For the Parascaptor dataset, we employed the A10 model, which focuses 
solely on species delimitation since only two putative species were included. For the Euroscaptor 
dataset, we utilized both the A10 and A11 models, with the latter allowing for simultaneous 
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species delimitation and species-tree estimation. We applied both algorithms 0 and 1, and 
conducted six analyses for each dataset per model, using various combinations of parameters and 
priors (Table S3). 
 
2.2 Morphometric and geometric morphometric analyses 
2.2.1 Traditional morphometrics  

Fifteen craniomandibular variables were measured using a digital caliper graduated to 
0.01 mm from 66 specimens of Parascaptor and 76 specimens of Euroscaptor (Appendix I): CIL 
(Condyloincisive length), PIL (Palatoincisive length), PPL (Postpalatal length), CB (Cranial 
breadth), IOB (Interorbital breadth), ZB (Zygomatic breadth), CH (Cranial height), UTL (Upper 
toothrow length), P4-M3 (Distance from the upper fourth premolar to the upper third molar), 
M2M2 (Maximum width across the upper second molars), BFM (Foramen magnum breadth), 
LTR (Lower toothrow length not including first incisor), LLM (Lower molars length), ML 
(Mandible length), HCP (Height of coronoid process). We conducted Principal Component 
Analysis (PCA) and Canonical Variate Analysis (CVA) on log10-transformed variables using the 
stats and Morpho packages [77], respectively. The results were visualized using ggplot2 and plotly. 
 
2.2.2 Specimen accession and photography 

We photographed specimens housed at natural history museums in China, Vietnam, 
Japan, Germany, and the USA (Appendix I). Specimens at the Institute of Zoology, Chinese 
Academy of Sciences (IOS); Kunming Institute of Zoology, Chinese Academy of Sciences (KIZ); 
Sichuan Academy of Forestry (SAF); Guangdong Institute of Zoology (GIZ); National Museum of 
Natural Science at Taichung (NMNST); Smithsonian Institution National Museum of Natural 
History (USNM); American Museum of Natural History (AMNH); Field Museum of Natural 
History (FMNH); Museum of Comparative Zoology, Harvard (MCZ); National Museum of 
Nature and Science of Japan (NSMT); Hokkaido University Natural History Museum (HUNHM); 
University of Miyazaki; Institute of Ecology and Biological Resources of Vietnam (IEBR) were 
photographed by K.H. Photos at the State Museum of Natural History Stuttgart (SMNS) were 
taken by Q.M. Additional photos of two Russian desman specimens were taken by T. Martin and 
C. Steinweg, while photos of two Galemys specimens were taken by J. Decher and C. 
Montermann. 

We utilized either a Nikon D300 or D7100 with a Nikon 105mm f/2.8G lens, or a Canon 
EOS 7D Mark II with an EF 100mm f/2.8L IS USM. Consistent and standardized criteria were 
applied for dorsal, ventral, and lateral views of the skull, as well as the lateral view of the 
mandible. A camera stand was used to stabilize the camera, with the skull or mandible placed on a 
small plate approximately 10-30 cm below the lens, depending on the specimen size. All pictures 
were taken on a blue background. A level was placed on both the camera and the specimen plate 
to ensure the lens was perpendicular to the specimens. Additional lighting or a flash was used 
when appropriate. Depending on the lighting and flash systems, which varied in different 
museums, we adjusted the F-stop in the range of 13 to 23 and ISO from 200 to 1250 to ensure 
high photo quality. Due to the requirements of deep learning, we included only species with at 
least three specimens, excluding Alpiscaptulus medogensis and Euroscaptor sp.2, which each had 
only two specimens available. In total, we collected 2998 photos representing 819 specimens from 
18 (out of 19) talpid genera and 51 species/putative species. 
 
2.2.3 Geometric morphometric analysis 

We used the ventral view of the skulls for geometric morphometric analyses. Only 
complete skulls were included for Parascaptor and Euroscaptor. A total of 38 specimens 
representing P. leucura (n=13), Parascaptor sp.1 (3), and Parascaptor sp.2 (22), and 55 
specimens representing E. grandis (5), E. klossi (8), E. kuznetsovi (3), E. longirostris (12), E. 
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malayana (6), E. micrura (10), E. orlovi (3), E. parvidens (4), and Euroscaptor sp.1 (4) were used. 
The backgrounds of the images were removed using Adobe Photoshop. The analyses were 
conducted as implemented in R v4.4. We utilized the outlineR package to generate the outlines of 
the skulls. Subsequently, the Momocs package was employed to subsample 150 coordinates from 
the existing points per specimen [78]. We then performed Elliptical Fourier Analysis (EFA) to 
quantify the shape of each outline. Following the EFA, we conducted PCA and CVA as described 
above. 
 
2.3 CNN based species identification 
2.3.1 Data labeling and manipulation  

Each photo (see section 4.2.2) was labeled with the following information: genus and 
species name, voucher ID, skull or mandible, and the view of the skull (lateral, ventral, or dorsal). 
It is common for small mammal skull specimens in museums to be broken or have missing parts, 
as many were captured using snap traps. Among the 819 specimens included in the data set, 133 
had fewer than four images due to missing or completely broken cranial bones, while 203 images 
were labeled as partly broken (Table S5). Minor damage such as missing zygomatic arches were 
not considered as broken. We manually cropped the images to retain only the skull or mandible, 
removing the peripheral areas. Then we standardized the images to square dimensions by padding 
the shorter edges with black pixels. The dataset was then divided into training (data Trn0) and 
testing (Tst0) sets with a ratio of 8:2. This division was performed at the specimen level, ensuring 
that all images of a specimen were placed into the same dataset (Table S6).  
 
2.3.2 Data augmentation  

It is well-established that larger datasets lead to improved performance in deep learning 
networks [79]. However, obtaining specimens of rare and newly recognized species, often 
represented by only a few samples in museum collections, presents a significant challenge. To 
address this limitation, we employed a comprehensive data augmentation strategy, introducing 
minor distortions to images of the training data to mitigate overfitting during neural network 
training [80]. To achieve numerical balance among different genera, we applied higher data 
augmentation factors to those with fewer samples. Specifically, we utilized between 3 to 14 
augmentation techniques per genus including rotation (rotate 90, rotate 45), mirroring (horizontal, 
vertical), masking (drop out, coarse drop out), blurring (gaussian, average, motion), noise injection 
(salt and pepper, additive gaussian, impulse), and contrast change (gamma contrast, sigmoid 
contrast) (Fig. S12). For genera with particularly few specimens (e.g., Desmana, Galemys, and 
Scapanulus), we created duplicates of the augmented data and applied an additional augmentation 
method, average pooling, to these duplicates, resulting in a 30-fold increase in the number of 
augmented samples. The augmentation factors ranged from 4 to 30 at the genus level, with an 
average augmentation factor of approximately 9 (Table S5). 
 
2.3.3 CNN selection  

Different types of CNN architectures have varying feature extraction capabilities, with 
shallow CNNs better suited for capturing low-level features, while deeper CNNs excel at 
identifying more complex, high-level semantic information [81]. To select the most suitable CNN 
for talpid mole species identification, we compared various networks with different architectures, 
complexities, and performance metrics. Specifically, we evaluated AlexNet, the EfficientNet 
series [82], GoogleNet [83], MobileNet [84], the ResNet series [85], the ShuffleNet series [86], and the 
VGGNet series [87]. The parameters used per model are given in Table S7. To optimize 
computational efficiency, we first standardized the image resolution to 224x224 pixels for both the 
training and testing datasets. To improve network performance and species recognition accuracy, 
we utilized transfer learning [88], leveraging network parameters pre-trained on large datasets like 
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ImageNet [89]. Each network was trained and evaluated based on accuracy and computational 
efficiency. Additionally, we assessed the impact of data augmentation by using training datasets 
with (Trn1-224) and without (Trn0-224) data augmentation.  
 
2.3.4 Image resolution selection  

Image resolution significantly impacts the performance of deep learning models [90]. 
Higher image resolution offers richer details, potentially enhancing classification accuracy, but 
also increases computational complexity due to the larger number of model parameters. To 
investigate this trade-off, we compared network performance across different resolutions: 
224x224, 260x260, 300x300, and 380x380 pixels (Table S8). Given that the EfficientNet series 
demonstrated the highest accuracy (see Results section), our analyses focused on EfficientNet B0, 
B2, B3, and B4. Briefly, these networks differ in their network depth, width, and resolution, with 
higher versions (B2, B3, B4) having increased capacity and complexity to capture more intricate 
features compared to B0. Since data augmentation significantly improved network accuracy (see 
Results section), we exclusively used augmented datasets in this and subsequent analyses.  
 
2.3.5 Individual reconciliation  

The EfficientNet, as well as other CNNs, performs identification on an image-based 
manner, yielding probabilistic outputs. Given that each specimen is represented by up to four 
images—dorsal, ventral, and lateral views of the skull, and a ventral view of the mandible—and 
recognizing that each cranial and mandibular view contains varying quantities of diagnostically 
relevant characters for species identification, thus yielding differential identification accuracies, 
we developed a weighted approach to reconcile multiple image outputs into a consolidated 
specimen identification. 

We calculated genus-level identification accuracy for each view and derived weights 
using the formula: �� = 1 − (�cc��� – �cc�) ∗�, where �

 � represents the weight for each view, 

�cc��� denotes the highest accuracy among the four views, �cc� is the accuracy for each 
individual view, and � is a parameter used calibrate the weighting (set to 10 in this study). These 
weights (ω1, ω2, ω3, ω4) are then used to combine the probability distributions of four different 
views of the skulls. The final genus-level identification for each specimen is determined by 
maximizing the weighted sum of these views' probability distributions. The process is expressed 

mathematically as follows: ����������� � ��	
�����_� 
 �
 � ��_� 
 �� � ��_� 
 �� � �
_� 


��� , where ��_�，��_�，��_�，�
_� represent the probability distribution matrices for the dorsal, 

ventral, lateral skull, and lateral mandible views, respectively, and ω1-4 are the corresponding 
weights for each view as calculated earlier,. The sum of the probabilities in each matrix is 
normalized to 1. The argmax function identifies the class with the highest combined probability, 
which corresponds to the final predicted genus-level category for the specimen, denoted as 
����������� . 
 
2.3.6 A hierarchical identification network  
 Given that direct species-level identification resulted in an overall accuracy below 90% (see 
Results Section), and considering that seven of the 18 talpid genera are polytypic (Euroscaptor, 
Mogera, Talpa, Scapanus, Scaptonyx, and Uropsilus while Parascaptor was shown to contain 
two cryptic species), we implemented a hierarchical classification scheme, employing a cascade 
of classifiers to sequentially identify specimens to the genus and species level. This approach 
utilized two primary classifiers: one trained to distinguish among all talpid genera, and a second 
suite of species-level classifiers tailored to a specific polytypic genus. The genus classifier first 
assigned each specimen's photographic set to the most probable genus. For specimens predicted 
to belong to a polytypic genus, the photographic set was then passed to the corresponding 
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species-level classifier. Individual image classifications were then reconciled to produce a single, 
consolidated species prediction for each specimen. This strategy addresses the hierarchical nature 
of taxonomic relationships and the varying levels of morphological differentiation between and 
within genera. We named our network, Hierarchical Identification of Species NETwork (HIS-
NET). 

To assess the consistency of the network performance and minimize the influence of data 
partitioning on the result, we implemented a five-fold cross-validation approach. The dataset was 
partitioned into five subsets of approximately equal size. In each iteration, four subsets were utilized 
for network training, while the remaining subset served as the validation set.  

To elucidate the decision-making process of our network, we employed the Class 
Activation Mapping (CAM) algorithm to generate heatmaps, which were superimposed on the 
original images. We then manually inspected these heatmaps to discern which part of the 
skull/mandible the deep learning network prioritized and identified as crucial for species 
identification. 
 

 
3. Results 

3.1 Talpid phylogenetic hypotheses employing UCE data are robust and support the existence 
of cryptic species 

 Both concatenation (RAxML; Fig. 1, Fig. S1) and coalescent (ASTRAL; Fig. S2) 
analyses produced highly supported topologies that were broadly consistent with each other. 
Briefly, both analyses recovered the subfamilies Uropsilinae and Talpinae, unite the three shrew 
mole tribes into a monophyletic clade, and support a basal divergence of Scalopini within 
Talpinae. Of note, Condylura was placed sister to shrew moles with high support in both analyses 
(maximum likelihood bootstrap value [BS]=100, ASTRAL coalescent bootstrap value [c-
BS]=1.0). The only topological discrepancies between analyses pertain to shrew mole 
interrelationships and the placement of a single lineage (Euroscaptor sp.2) within Talpini. Chief 
among these is that the UCE concatenation analysis strongly supported Chinese shrew moles 
(Scaptonyx) as sister to North American shrew moles (Neurotrichus), while the UCE coalescent 
analysis placed Scaptonyx sister to the Japanese shrew moles (Urotrichus + Dymecodon) with 
high support. Importantly, both analyses revealed the presence of distinctive genetic lineages in 
Uropsilus, Euroscaptor and Parascaptor, confirming an underestimation of species diversity 
within the Southwest China sky island complex. Given that the Uropsilus species continuum 
comprises numerous undescribed species [14, 32] that were not sampled here, we will henceforth 
focus our attention on cryptic species delimitation within Euroscaptor and Parascaptor.  
 
3.2 Molecular species delimitation supports the genetic distinctiveness of cryptic species  

To test whether the genetically distinctive cryptic lineages identified in Euroscaptor and 
Parascaptor form monophyletic clades according to the PSC, we extended our taxon sampling for 
members of these genera and estimated mitochondrial phylogenies based on cytochrome B (CYTB) 
gene sequences. The CYTB gene tree revealed that the Parascaptor sp.1 clade represents a basal 
divergence of the genus (Fig. S3A) that is comprised of specimens from eastern Yunnan and 
southern Sichuan (Fig. S4A). P. leucura is represented by one specimen from northeast India that 
was placed sister to P. sp. 2 specimens from southwestern Sichuan, central and western Yunnan, 
and northeastern Myanmar (Fig. S4A). Notably, both species delimitation analyses – Automatic 
Barcode Gap Discovery (ABGD) and Assemble Species by Automatic Partitioning (ASAP) – and 
our K2P genetic distance heatmaps further revealed distinctive subclusters among Parascaptor 
sp.2 populations from Yunnan, Sichuan, and Myanmar (Fig. S3A). However, due to limited 
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specimen sampling from most identified subclusters, we here conservatively treat Parascaptor 
sp.2 as a single putative species. 

The Euroscaptor sp.1 and E. sp.2 samples used in the UCE analyses are from museum 
specimens collected in the 1960’s, with E. sp.1 originally identified as E. klossi, while the two 
specimens of E. sp.2 were identified individually as E. micrura and E. grandis [91]. However, the 
CYTB gene trees of Euroscaptor support our finding that these specimens instead belong to cryptic 
lineages that each form a well-supported monophyletic clade, a conclusion also evidenced by the 
ABGD and ASAP analyses (Fig. S3B). Both lineages are moreover geographically separated from 
other species in this genus, with E. sp.1 distributed between the Salween and Mekong rivers of 
southwestern Yunnan, and E. sp.2 only being known from one locality to the west of the Salween 
River in southwestern Yunnan (Fig. S4B).  
 

 
Figure 1. Phylogenetic relationships among talpid species. This maximum likelihood (RAxML) 
tree was constructed using concatenated ultraconserved element (UCE) data. Unless specified, all 
relationships are highly supported by both concatenation and coalescent analyses. Relationships 
not strongly supported in concatenation (BS <0.95: $; Fig. S1) or coalescent analysis (c-BS <0.95: 
#; Fig. S2) are indicated. Paintings of representative species by Umi Matsushita. 
 

To further validate these putative species, we conducted multispecies coalescent analyses 
using 11 nuclear genes, as implemented in Bayesian Phylogenetics and Phylogeography (BPP). 
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Due to insufficient taxon sampling, however, Euroscaptor sp.2 was not included in the BPP 
analysis. In line with the CYTB results, BPP employing various combinations of algorithms and 
parameters consistently supported the genetic distinctiveness of Parascaptor sp.1 and P. sp.2, as 
well as supporting Euroscaptor sp.1 as a well-defined species (Table S3). 

Notably, our CYTB and species delimitation analyses also uncovered distinct subclades 
within several recognized Euroscaptor species (e.g., E. orlovi, E. kuzentsovi) and revealed that E. 
parvidens is paraphyletic. Accordingly, species diversity within this genus is almost certainly 
larger than currently described. 
 
3.3 Measurement- and outline-based morphometric analyses support subtle but consistent 
differences between recognized and cryptic species 

To complement the above molecular delimitation results, we examined the morphological 
distinctiveness of Parascaptor sp.1, P. sp.2, and Euroscaptor sp.1 using a morphometric analysis 
with 15 cranial measurements and a geometric morphometric analysis based on the outline shape 
of the ventral view of the skull. For Parascaptor, principal component analysis (PCA) based on 
both linear measurements and outline shapes failed to clearly separate P. leucura and the two 
putative species (Fig. S5A, E), indicative of a high degree of morphological similarity. For 
instance, in the measurement-based analysis, a plot of the first two principal component scores 
(PC1 vs. PC2, respectively) shows that Parascaptor sp.2 is generally plotted more negatively on 
the PC2 axis and more positively on the PC1 axis. Although this positioning allows for a marginal 
separation from P. leucura and P. sp.1, plots of the latter two species overlap in the positive side 
of PC2. PC2 accounts for 14.4% of the variation and is positively correlated with height of 
coronoid process (HCP) (loading >0.89), and negatively correlated with lower molar row length 
(LLM) (loading <-0.52) (Table S4A). This indicates that P. leucura and P. sp.1 are characterized 
by longer postpalatal length, wider cranial breadth, but a shorter lower molar row, compared to P. 
sp.2. On the other hand, canonical variate analysis (CVA) successfully differentiated all three 
species with 100% accuracy, with all three species being well separated in the plots of the first two 
canonical variates (Fig. S5C, G).  

In the case of Euroscaptor, measurement-based PCA and CVA both showed that 
Euroscaptor sp.1 plots closely with E. klossi, while the outline-based PCA revealed a close 
association of E. sp.1, E. klossi, and E. micrura (cf. Figs. S5B, D with Fig. S5F). In the PCA plot 
of the measurement-based analysis, E. sp.1 is plotted in the negative region of PC1 and the 
positive region of PC2, suggesting an overall smaller skull (PC1 is positively correlated with all 
measurements), a larger distance between the upper molars, and a broader foramen magnum 
breadth (Table S4B). This distinctiveness is supported by the outline-based CVA analysis which 
clearly differentiated Euroscaptor sp.1 from E. klossi, E. micrura and the two other closely related 
species included in the analysis. In summary, while PCA support overall morphological 
conservatism among Euroscaptor and Parascaptor species, the CVA analysis reveals subtle and 
consistent differences that discriminate species and putative species, supporting the recognition of 
these putative species as distinct taxonomic entities. 
 
3.4 CNN network reach human-expert level accuracy in species identification  
 As traditional cranial measurement methods may overlook morphological differences that 
distinguish genetically distinct talpid lineages, our final aim was to evaluate the potential of deep 
learning techniques for this purpose. Our final data set included 2998 cranial photos from 819 
specimens (generally four different views – ventral skull, dorsal skull, lateral skull, and lateral 
mandible – per specimen) representing 51 species/putative species across 18 genera (Table S5). 
Prior to building a convolutional neural network (CNN) for species identification, we first 
compared the identification accuracy of 19 different network models at the genus level using a 
224x224 pixel image data set to identify the most suitable CNN architecture for this task. The 
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networks were initially trained on a subset (~80%) of photos (data set Trn0-224; Table S6) 
followed by testing on the remaining ~20% (data set Tst0-224), resulting in genus identification 
accuracies ranging from 43.7-92.9% (Table S7). We then applied various photo manipulation 
techniques (Fig. S12) to create an augmented 21,429 photo data set (Trn1-224) which was shown 
to improve network identification accuracy by 3.2%-39.5%. As the EfficientNet series exhibited a 
moderate computational efficiency yet was found to consistently achieve the highest identification 
accuracy on both the non-augmented and augmented data sets, we thus further explored the impact 
of image resolution on genus identification accuracy when using this model series. Identification 
accuracy was found to progressively increase at higher image resolutions, with all EfficientNet 
models achieving accuracies >96.5% at 380x380 pixels (Table S8). Accordingly, we selected the 
EfficientNet-B3 model with a 380x380 pixel resolution for subsequent analyses based on its 
superior accuracy (98.0%) and workable computational efficiency. 

We next tested the effects of integrating different cranial views and a hierarchical 
identification strategy for species identification accuracy. When we first attempted to match single 
specimen images – either the lateral mandible view or the lateral, ventral, or dorsal views of the 
skull – to one of the 51 species (one-step strategy), 27 species (52.9%) were always correctly 
identified (Fig. S6), with overall species identification accuracy being 88.0% (Table 1). 
Reconciling the results of up to four images per specimen increased the number of species (37 of 
51 or 72.5%) always corrected identified (Fig. S7), though the average species identification 
accuracy was largely unchanged (88.5%). 

 
Figure 2: The architecture of HIS-NET (Hierarchical Identification of Species NETwork). 
Digital photographs of multiple skull views (skull dorsal view, s_d; skull ventral view, s_v; skull 
lateral view, s_l; mandible lateral view, m_l) were first processed for each specimen by CNN-
based classifiers (a) to obtain a probability matrix (P) per image. Image reconciliation (b) was then 
performed to sequentially predict the genus (Stage I) and species (Stage II) of the specimens. The 
lower left panel illustrates the image classifier's structure, comprising multiple convolutional, 
pooling, and fully connected layers (see text for details). The lower right panel depicts the 
reconciliation process, where the probability matrix (P) for each specimen's images is multiplied 
with a view-specific weight vector (W) to produce the final identification through an argmax 
operation.  

 
When implementing a hierarchical identification strategy (Fig. 2), the average single image-

based identification accuracy at the genus level was 98.0% with 12 of 18 (66.7%) genera always 
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correctly identified (Fig. S8), while the multi-photo specimen-based analysis always correctly 
identified 14 genera (77.8%) with a mean accuracy of 97.0% (Fig. S9). At the species level, the 
mean image-based and specimen-based identification accuracies were slightly lower at 90.4% and 
91.5%, respectively (Table 1). We further evaluated the robustness of our network using a five-fold 
cross-validation strategy (Table S9). This resulted in an image-based accuracy of 86.4% and a 
specimen-based accuracy of 89.0%. In conclusion, the hierarchical approach enhanced the accuracy 
by ~2-3% and reached close to 90% specimen-based accuracy, demonstrating that our CNN 
network attained a human-expert level accuracy. We named our network HIS-NET (Hierarchical 
Identification of Species Network). 

It is worth stressing that the identification of small mammal specimens often presents 
additional challenges due to the frequent occurrence of missing or broken skull and/or mandible 
elements. These conditions not only complicate identification efforts but often necessitate the 
exclusion of such specimens from both morphometric and geometric morphometric analyses. We 
thus tested the accuracy of species identification across various combinations of image availability 
and specimen integrity (Table S9). Our findings indicate that when four images per specimen 
were available, or when three images included at least two complete views, the HIS-NET model 
consistently achieved species identification accuracies ≥ 88%. Conversely, when two out of three 
views of the skull were broken, or when the total number of images was limited to one or two, the 
identification accuracy dropped below 75% (Fig. S10). These results underscore the need for 
careful consideration of specimen condition and the development of standardized imaging 
protocols in the implementation of such technologies. 

 
Figure 3. Confusion matrix heatmap showing HIS-NET identification accuracy for 
recognized and cryptic species in all polytypic talpid genera. The panels illustrate the accuracy 
for (A) Uropsilus, (B) Talpa, (C) Scapanus, (D) Mogera, (E) Parascaptor, (F) Scaptonyx, and (G) 
Euroscaptor. Numbers at the top of each cell denote the number of specimens assigned to each 
species. 
 
 
3.5 HIS-NET accurately identifies cryptic species and reveals novel diagnostic characters  
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Our final goal was to examine whether the genetically identified cryptic species could be 
distinguished correctly from their con-generic partner. The three cryptic species included in this 
analysis (E. sp.1, P. sp.1, P. sp.2) were correctly identified with 100% accuracy (Fig. 3), which is 
higher than the mean identification accuracy of recognized species within the seven studied 
polytypic talpid genera (86.9%). This finding underscores the ability of HIS-NET to efficiently 
distinguish cryptic species based solely on cranial photos. 

To better understand the model's decision-making process, we examined Class Activation 
Mapping (CAM) generated heatmaps to identify morphological features that HIS-NET deemed 
most informative for species discrimination. Across all taxonomic groups and regardless of 
whether the focus was on the skull or mandible, HIS-NET consistently prioritized dental regions, 
particularly the premolars and molars (Fig. 4). For instance, the upper premolars P4 exhibited 
notable variations across the three species/putative species of Parascaptor: in P. leucura, P4 is 
characterized by a well-developed paracone with a crest extending posteriorly that connects with a 
low metastyle, forming a near-triangular shape on buccal view. The P4 paracone of P. sp.1 
extends from a crest that descends vertically without directly connecting to the metastyle cusp. 
The P4 morphology of P. sp.2 is reminiscent of its P2, with a crest extending posteriorly from the 
paracone but not directly connecting to the more posteriorly positioned metastyle, resulting in a 
trapeziform shape of P4 when viewed buccally. However, the developmental progression of P4 
follows a different order: P. sp.2 > P. leucura > P. sp.1, consistent with the topology of the CYTB 
gene tree. 

 

Figure 4. Example of class activation mapping (CAM) heatmaps obtained from 
representative talpid species and putative species. For each species, the images in each column 
from top to bottom represent the dorsal, lateral and ventral views of the skull and the lateral view 
of the mandible, respectively. The relative importance of each skull region that the model uses for 
species identification is denoted by color, with red and blue areas being of high and low 
importance, respectively. The images show that the dental regions, as well as palatine, pterygoid, 
and tympanic regions are important contributors for the model’s decision-making process. 

 
For the skull, the model also focused on the maxillary region in both ventral and lateral 

views, as well as the nasal and frontal areas in the dorsal view (Fig. 4). Additionally, HIS-NET 
frequently highlighted the palatine, pterygoid, and tympanic regions, with occasional emphasis on 
the parietal bone in some specimens. Most of these areas have long been known to be critical for 
species identification in small mammals. In the case of the mandible, the model consistently 
emphasized the ascending ramus, with particular attention to the area surrounding the condylar 
process. The observation that HIS-NET consistently focused on known informative anatomical 
regions emphasize the model's ability to detect specific features that are crucial for species 
identification. However, our examination of CAM-highlighted areas in Euroscaptor revealed 
additional intriguing features beyond differences in upper and lower dental morphology. Notably, 
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CAM highlighted the basipharyngeal region as crucial for species identification of Euroscaptor 
sp.1. The pterygoid hamuli, which form the walls of the basipharyngeal canal in this species, 
extend laterally on the anterior half. This feature is distinctive among all examined Euroscaptor 
species and has not previously been utilized as a diagnostic character in talpid taxonomy. These 
findings emphasize the power of CAM in assisting the identification of novel, effective diagnostic 
features that traditional morphometric and geometric morphometric approaches may overlook. 
 
4. Discussion 
4.1 New hypothesis of Talpidae evolution 

Our phylogenetic analyses using UCEs corroborate and are largely congruent with 
previously published topologies derived from Tree of Life genes [8, 37]. Briefly, all three studies fail 
to support the monophyly of the two strictly fossorial tribes (Scalopini and Talpini) thereby 
supporting the contention first suggested by Shinohara et al. [92] that this derived lifestyle evolved 
twice independently in this family. Desmanini was also recovered as the sister group to a clade 
containing shrew moles, star-nosed moles, and Eurasian fossorial talpids congruent with the 
concatenation analysis of He et al. [37]. Similarly, the UCE concatenation analysis placed Chinese 
shrew moles (Scaptonyx) sister to North American shrew moles (Neurotrichus) in line with both 
Tree of Life studies [8, 37]. The only major discordance among these studies pertains to the 
placement of Condylura, which has been notoriously difficult to resolve [92]. Importantly, the 
current analyses reveal a novel and well-supported sister relationship between the star-nosed mole 
(C. cristata) and shrew moles. This finding conflicts with earlier studies that placed Condylura 
sister to Desmanini [8] or Talpini [37] with moderate to low support. Accordingly, our robust 
phylogenetic hypotheses provide a valuable framework for further investigation into the 
systematics of talpids, encompassing both extant and extinct lineages. Importantly, the results 
support the presence of multiple undescribed lineages within widespread recognized species or 
species complexes, highlighting the rich species diversity in the sky islands of Southwest China. 
 
4.2 Unraveling the underestimated species diversity of talpid mole 

Our comprehensive study, combining ultraconserved element (UCE) phylogenomics, 
molecular species delimitation, traditional morphometrics, and cutting-edge CNN-based 
analyses, reveals a previously underappreciated diversity within the genera Euroscaptor and 
Parascaptor. Each cryptic lineage identified in the UCE phylogeny emerged as a monophyletic 
clade and is supported by measurable and diagnosable morphological characters despite the 
overall morphological conservatism within each genus. These cryptic species are moreover 
confined to restricted mountain ranges (Fig. S4) and conform to IBD/IBE diversification 
principles. Collectively, these lines of evidence unambiguously support the recognition of these 
cryptic lineages as full species, even under the stringent criteria of the dmPSC. 

Our findings indicate that Parascaptor comprises at least three distinct species: P. leucura, 
distributed across Nepal, northeastern India, and parts of western Myanmar; P. sp.2, inhabiting 
central and western Yunnan, southwestern Sichuan, and eastern and central Myanmar; and P. sp.1, 
found in central-eastern and northeastern Yunnan and adjacent southern Sichuan. Although 
genetic data for P. leucura were not included in this study, unpublished data (pers. comm. Shi-
Ichiro Kawada) indicate that Parascaptor sp.1 is sister to a clade comprising P. leucura and 
Parascaptor sp.2. This phylogenetic relationship aligns with our morphological analyses, which 
reveal that Parascaptor sp. 1 exhibits the most primitive dental (current study) and mandibular [34] 
morphology of the three species. 

In Euroscaptor, our analyses support the recognition of Euroscaptor sp.1 from Menglian. 
Originally identified as E. klossi following their collection in 1964, these specimens instead form a 
lineage distinct from other nearby distributed species (E. klossi, E. kuznetsovi, and E. orlovi) (Fig. 
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S4). The status of Euroscaptor sp.2, represented by two samples (one with a broken skull and skin 
and the other with only skin) from Yingjiang, remains less certain. While mitochondrial data 
clearly differentiate it from E. grandis, we cannot rule out a potential affinity to E. micrura 
without further phylogenetic analysis including this species. 

The phylogeographic patterns observed in our newly identified talpid mole species provide 
compelling evidence for the role of sky islands in driving allopatric diversification across 
Southwestern China and adjacent mountain regions. Our findings reveal a clear IBD and IBE 
diversification pattern (Fig. S4), with species distributions confined to middle-to-high elevation 
habitats within distinct mountain ranges that are separated by large valleys and drainage systems. 
This pattern of distribution is consistent with observations in other animal groups inhabiting this 
region [17-21], underscoring the generality of these biogeographic processes. 

Importantly, our study unveils a hierarchical clustering pattern that adds a layer of 
complexity to the observed diversification. For instance, within Parascaptor sp.2, we identified 
distinct lineages from central Myanmar and western Yunnan (west of the Salween River), with 
each forming a separate clade/lineage (Fig. S3). This genetic structuring suggests ongoing 
diversification processes. Similarly, our analysis of the CYTB gene tree revealed that Euroscaptor 
parvidens comprises two non-monophyletic clades (Fig. S3), indicating an underestimation of 
species diversity within this taxon in the mountains of central and southern Vietnam. The finding 
of potentially distinct lineages in Euroscaptor orlovi and E. kuzentsovi additionally emphasize the 
need for further investigation with increased sampling efforts to fully elucidate the extent of 
cryptic diversity in southeast Asia.  
 
4.3 Advantage of CNN in species identification 

While CNNs have revolutionized species identification in various taxa like plants and insects [46-

48], their application in mammalian taxonomy, particularly for small mammals, has remained largely 
untapped. This is largely due to a lack of comprehensive skull and dental image databases for any group 
of mammals due to the high cost and time investment required for data collection. Species sample sizes 
of available museum specimens are also uneven, which is especially true for rare and recently 
recognized species. Finally, training CNNs to recognize minute interspecific differences in skull and 
dental features is a formidable task. To overcome these challenges, we first constructed global-scale 
image database encompassing nearly all genera and a majority of species within the talpid family. We 
also adopted an augmentation strategy which helped to balance the different sample sizes between 
genera and species. The high levels of species identification accuracy demonstrate the potential of CNNs 
for distinguishing (and discovering) nuanced morphological differences and highlights the potential 
applicability of deep learning networks using cranial images to other groups of mammals. 

Our HIS-NET, employing a hierarchical approach with sequential genus and species-level 
classifications, achieved an impressive overall accuracy exceeding 98% at the genus level and 91% at 
the species level, which represents an improvement of 2-3% over the one-step identification strategy. 
Direct species identification within our dataset would require processing an average of 6.0 bits of 
Shannon information entropy per identification, whereas our hierarchical approach reduced this to 4.2 
bits for genus-level and 2.8 bits for species-level classifications. This suggests that by breaking down the 
identification task, the network requires less information at each stage, making species decision more 
efficient. Moreover, hierarchical classification aligns with traditional taxonomic practice, where genus-
level distinctions are often more conspicuous than subtle interspecific differences. By first establishing a 
strong genus-level classification, HIS-NET likely benefits from a reduced search space and can focus on 
finer-scale morphological distinctions for species-level identification. Future research could explore 
adding subfamily and tribe hierarchical layers to potentially enhance computational efficiency and 
identification accuracy even further. 

The robustness of HIS-NET in identifying species from specimens with damaged or missing 
features that are typically not included in traditional and geometric morphometric analyses is 
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particularly noteworthy. This capability, enhanced by our data augmentation strategy simulating 
cranial damage (e.g., drop out and coarse drop out), addresses a common challenge in taxonomic 
studies of small mammals where specimens are often incomplete. However, specimens with fewer 
images combined with a higher percentage of broken skulls/mandibles were more prone to 
misidentification (Fig. S10).  

One of the most exciting aspects of our CNN approach is its ability to reveal previously 
overlooked morphological characters. For instance, the network found that the structure of the 
basipharyngeal canal in Euroscaptor species is highly effective in distinguishing between species of 
this genus (Fig S11). Analysis of this structure has been employed for other groups of mammals [93] 
though has previously been overlooked in Talpidae taxonomy. This discovery thus underscores 
the potential of CNNs in guiding taxonomists towards a novel and valuable repertoire of 
distinguishable morphological characters for species delimitation, which in turn could accelerate 
our ability to discern cryptic species more efficiently. 

Our results also illuminate several avenues for future research and methodological 
improvements. First, because we show that incorporating different views of the skull improves 
identification accuracy, expanding the image database to include more views, such as the occlusal 
surfaces of mandibles, and/or taking multiple photos from different angles of the same view could 
further improve accuracy [47, 94]. Indeed, the occlusal view includes dental morphology that is 
crucial for identification of extant and fossil species. Second, while our CNN achieved expert-
level accuracy, the CAM revealed that the network tends to focus on specific regions of each 
image. This selective attention, while effective, suggests that our model has not yet fully captured 
the complexity of morphological variation present in the skulls and teeth of talpid moles. Thus, 
incorporating advanced machine learning techniques such as attention mechanisms [95] or object 
detection algorithms [96], coupled with specific guidance such as labeling individual teeth and 
auditory bullae, could further enhance the model's accuracy. Third, an intriguing finding of our 
study was the unexpectedly high accuracy rates achieved from the dorsal skull view, which were 
comparable to those obtained from ventral and lateral views (Table 1). This observation 
challenges the notion that dorsal skull features are less informative for species identification in 
vertebrates. It further suggests that there may be previously unrecognized or underappreciated 
morphological characters in the dorsal skull region that are taxonomically significant.  

In conclusion, our CNN-based approach represents a technological advancement in 
mammalian taxonomy, offering a powerful tool for bridging the gap between molecular species 
delimitation and traditional morphological examination. It also highlights the potential for further 
refinement and expansion of these methods. The integration of deep learning with traditional 
taxonomic methods promises to revolutionize our ability to discern and discover species, 
particularly in groups with subtle morphological differences. 
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Figure captions: 
 
Figure 1. Phylogenetic relationships among talpid species. This maximum likelihood (RAxML) 
tree was constructed using concatenated ultraconserved element (UCE) data. Unless specified, all 
relationships are highly supported by both concatenation and coalescent analyses. Relationships 
not strongly supported in concatenation (BS <0.95: $; Fig. S1) or coalescent analysis (c-BS <0.95: 
#; Fig. S2) are indicated. Paintings of representative species by Umi Matsushita. 
 
Figure 2: The architecture of HIS-NET (Hierarchical Identification of Species NETwork). 
Digital photographs of multiple skull views (skull dorsal view, s_d; skull ventral view, s_v; skull 
lateral view, s_l; mandible lateral view, m_l) were first processed for each specimen by CNN-
based classifiers (a) to obtain a probability matrix (P) per image. Image reconciliation (b) was then 
performed to sequentially predict the genus (Stage I) and species (Stage II) of the specimens. The 
lower left panel illustrates the image classifier's structure, comprising multiple convolutional, 
pooling, and fully connected layers (see text for details). The lower right panel depicts the 
reconciliation process, where the probability matrix (P) for each specimen's images is multiplied 
with a view-specific weight vector (W) to produce the final identification through an argmax 
operation.  
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Figure 3. Confusion matrix heatmap showing HIS-NET identification accuracy for 
recognized and cryptic species in all polytypic talpid genera. The panels illustrate the accuracy 
for (A) Uropsilus, (B) Talpa, (C) Scapanus, (D) Mogera, (E) Parascaptor, (F) Scaptonyx, and (G) 
Euroscaptor. Numbers at the top of each cell denote the number of specimens assigned to each 
species. 
 
 
Figure 4. Example of class activation mapping (CAM) heatmaps obtained from 
representative talpid species and putative species. For each species, the images in each column 
from top to bottom represent the dorsal, lateral and ventral views of the skull and the lateral view 
of the mandible, respectively. The relative importance of each skull region that the model uses for 
species identification is denoted by color, with red and blue areas being of high and low 
importance, respectively. The images show that the dental regions, as well as palatine, pterygoid, 
and tympanic regions are important contributors for the model’s decision-making process. 
 
 

Table 1. A summary of species identification (Acc) percentages (%) in different analyses 
based on the images of lateral (Skull-L), ventral (Skull-V), and dorsal (Skull-D) views of the skull 
and the lateral mandible view (Mandible-L).  

  ���Skull-D 

(%)  ���Skull-V (%) 
��� Skull-L 

(%) 
���Mandible-L 

(%) 
���Average 

(%) 
���Specimen 

(%) 
One-step: species  89.9 88.4 91.1 83.3 88.0 88.5 
HIS-NET: genus 99.3 98.0 99.3 95.7 98.0 97.0 

HIS-NET: all species 93.5 91.2 89.7 87.7 90.4  91.5 
HIS-NET: recognized 

species in polytypic genus  88.5 84.9 83.3 83.3 84.9 86.9 

HIS-NET: cryptic species 100.0 100.0 88.9 100.0 97.1 100.0 
HIS-NET: 5-fold cross-

validation 87.9 87.5 86.0 84.4 86.4 89.0 

 
 
 
Supplementary materials 
 

Supplementary figures 
Figure S1. Phylogenetic tree of Eulipotyphla (Talpidae, Soricidae, Erinaceidae and 

Solenodontidae) based on a concatenated alignment of ultraconserved elements. Branch lengths 

represent substitutions per site. Unless specified, all relationships are highly supported (bootstrap 

value =1.0).  

Figure S2. Phylogenetic tree of Eulipotyphla (Talpidae, Soricidae, Erinaceidae and 

Solenodontidae) based on a coalescent analysis of ultraconserved elements. Branch lengths 

represent coalescent units. Unless specified, all relationships are highly supported (bootstrap 

value =1.0). Dashes indicate weakly supported relationships (bootstrap value < 0.5), while the 

hashtag indicates a relationship different from that estimated in the concatenation analysis.  

Figure S3. A heatmap showing the Kimura 2-parameter distance (K2P) of the CYTB gene among 

species and samples in (A) Parascaptor and (B) Euroscaptor. CYTB gene trees for each genus are 

shown to the left and top of each heatmap. Vertical black bars represent species delimitation 

results from the Automatic Barcode Gap Discovery (ABGD) and Assemble Species by Automatic 

Partitioning (ASAP) analyses. The vertical blue bars to the right indicate taxonomic affiliations. 
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Displayed ultrametric trees are maximum likelihood gene trees estimated using complete CYTB 

sequences, as implemented in RAxML (see text for details). Results demonstrate that specimens in 

Parascaptor sp.1 and P. sp.2 each form reciprocally monophyletic clades, while specimens in 

Euroscaptor sp.1 and E. sp.2 also form distinct clades. Note that E. parvidens is shown to 

comprise two non-monophyletic clades in all three analyses.  

Figure S4. Distribution map of recognized and putative species in (A) Parascaptor and (B) Euroscaptor 

(B).  

Figure S5. Results of principle component analysis (PCA) and canonical variate analysis (CVA) based 

on measurement-based morphometric and outline-based geometric morphometric analyses. A-D: PCA 

plots showing scores on PC1 and PC2 derived from 15 log10-transformed craniomandibular 

variables for (A) Parascaptor and (B) Euroscaptor, and corresponding CVA plots displaying 

scores on CV1 and CV2 for the same data in (C) Parascaptor and (D) Euroscaptor. E-H: PCA 

plots illustrating scores on PC1 and PC2 based on skull outline shapes for (E) Parascaptor and (F) 

Euroscaptor, and corresponding CVA plots showing scores on CV1 and CV2 for the same data in 

(G) Parascaptor and (H) Euroscaptor. 

Figure S6. Confusion matrix heatmap showing the image-based identification accuracy for 

recognized and cryptic species across all species and putative species using a one-step strategy. 

Each photo was directly identified to one of the 51 species. The Y-axis (true_label) represents the 

actual species classification of each species, while the X-axis (predicted_label) represents the 

species classification result predicted by the model. Numbers at the top of each cell denote the 

number of specimens assigned to each species, while the percentage of specimens assigned to that 

species is listed at the bottom of the cell. The overall accuracy of the model, based on the correct 

identification of individual photos, was 88.0% (see Table 1). 

Figure S7. Confusion matrix heatmap showing the individual-based identification accuracy for 

recognized and cryptic species across all species and putative species using a one-step strategy. 

Each specimen was directly identified to one of the 51 species. The Y-axis (true_label) represents 

the actual species classification, while the X-axis (predicted_label) represents the species 

classification result predicted by the model. Numbers at the top of each cell denote the number of 

specimens assigned to each species, while the percentage of specimens assigned to that species is 

listed at the bottom of the cell. The overall accuracy of the model, based on the correct 

identification of individual specimen, was 88.5% (see Table 1).  

Figure S8. Confusion matrix heat map showing the image-based identification accuracy for all 

genera using HIS-NET. The Y-axis (true_label) represents the actual species classification, while 

the Y-axis (predicted_label) represents the species classification result predicted by the model. 

Numbers at the top of each cell denote the number of specimens assigned to each species, while 

the percentage of specimens assigned to that species is listed at the bottom of the cell. The overall 

accuracy of the model, based on the correct identification of individual images, was 98.0% (see 

Table 1). 
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Figure S9. Confusion matrix heatmap showing the specimen-based identification accuracy for all 

genera using HIS-NET. The Y-axis (true_label) represents the actual species classification, while 

the X-axis (predicted_label) represents the species classification result predicted by the model. 

Numbers at the top of each cell denote the number of specimens assigned to each species, while 

the percentage of specimens assigned to that species is listed at the bottom of the cell. The overall 

accuracy of the model, based on the correct identification of individual specimens, was 97.0% (see 

Table 1). 

Figure S10. Summary of species identification accuracy obtained following five iterations of 

cross-validation with HIS-NET. Each bar corresponds to a specific category, with values below 

each bar indicating the number of available images per specimen, and those in parentheses 

representing the number of images for each specimen showing a broken skull or mandible 

element. The height of each bar reflects the total number of specimens per category, with the 

green and orange segments corresponding to the number of correctly and incorrectly identified 

specimens, respectively. Numbers above each bar indicate the total number of specimens 

examined per category with the overall percent species identification accuracy for each category 

given in parentheses. 

Figure. S11. The lateral skull view of (A-C) three Parascaptor species/putative species and (D-F) 

the ventral skull view of three Euroscaptor species/putative species. 

Figure S12. Illustration of the various augmentation strategies used in this study. The original 

image (top left) was subjected to different augmentation techniques to introduce minor distortions 

and mitigate overfitting during neural network training. The augmentation methods included noise 

injection (SaltAndPepper, AdditiveGaussianNoise, ImpulseNoise), blurring (GaussianBlur, 

AverageBlur, MotionBlur), rotation (Rot90, Affine (rotate 45 degrees)), mirroring (Flipud 

(vertical flip), Fliplr (horizontal flip)), masking (CoarseDropout, Dropout), and contrast 

adjustment (SigmoidContrast, GammaContrast and AveragePooling). 

 
Supplementary tables 

Table S1. Taxonomy of Talpidae used in this study. 

Table S2. Information regarding specimens used for UCE sequencing, Tree of Life (TOL) gene 

sequencing, and CYTB gene sequencing, as well as accession numbers of sequences downloaded 

from GenBank for species delimitation analyses. 

Table S3: Summarized results of Bayesian Phylogenetics and Phylogeography (BPP) analyses for 

the genera (A) Parascaptor and (B) Euroscaptor using 11 nuclear genes. 

Table S4. Results of PCA conducted based on fifteen craniomandibular variables for (A) 

Parascaptor and (B) Euroscaptor. Factor loadings, eigenvalues and percentage of variance 

explained for each principal component (PC) are shown. 

Table S5. Summary of the number of specimens and photos used in the CNN-based analyses. A 

total of 51 species/putative species were included, following the taxonomy presented in Table S1. 

The images were divided into training and testing datasets with an approximate ratio of 4:1. Data 
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augmentation was applied to the training dataset, with up to 30-fold augmentation for each image. 

Table S6.   Prepared datasets used in CNN image-based analyses. Images from the original data 

(Origin) were cropped (Origin-C) and padded to a square shape (Origin-CP). These images were 

then split into training and testing datasets with an approximate ratio of 4:1. The images were 

downsized for model selection (resolution 224 x 224) and resolution selection (224 x 224, 260 x 

260, 300 x 300, and 380 x 380). 

Table S7. Summary of parameters used in each model.  The identification accuracy for each 

model using image data with and without augmentation is given (see text for details). 

Improvement is defined as the accuracy obtained using data with augmentation minus the 

accuracy without augmentation. The number of parameters (Params) and floating-point operations 

per second (FLOPs) for each model are also provided.  Stochastic Gradient Descent (SGD) was 

used as Optimizer. 

Table S8. Performance comparison (%) of the EfficientNet model series (B0, B2, B3 and B3) 

across various image input resolutions. The number of floating-point operations per second 

(FLOPs) required for each model are also provided. 

Table S9. Summary of the results of the five-fold cross-validation of HIS-NET on a specimen 

identification basis. The table includes the number of specimens, the number of incomplete 

specimens (represented by fewer than 4 images), and the number of images used in the training 

and testing datasets, along with species identification accuracy (%). Additionally, it provides a 

summary of correctly (Corr.) and incorrectly (Incorr.) classified images for various scenarios 

based on the number of images and the extent of broken skulls/mandibles. 

Table S10. Concatenation species tree estimated using (1) RAxML and (2) coalescent species tree 

estimated using ASTRAL-III.  Branch length represents substitutions per site (concatenation) and 

coalescent units (coalescent). 

 

Appendix: 
Appendix I. Specimens used in image-based CNN analyses and measurement-based 
morphometric analyses 
 
 
Data availability: 
The data for genetic analyses was uploaded to Mendeley Data, V1, (doi: 10.17632/h32txw2xb9.1). 
The code of HIS-NET is available through https://github.com/Hua-jiu/HISNET 
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